Hauptmenü öffnen

Reihe (Mathematik)

Objekt aus dem mathematischen Teilgebiet der Analysis
(Weitergeleitet von Unendliche Reihe)
Die Reihe konvergiert gegen 1.

Eine Reihe, selten Summenfolge[1] und vor allem in älteren Darstellungen auch unendliche Reihe genannt,[2] ist ein Objekt aus dem mathematischen Teilgebiet der Analysis. Anschaulich ist eine Reihe eine Summe mit unendlich vielen Summanden. Präzise wird eine Reihe als eine Folge definiert, deren Glieder die Partialsummen einer anderen Folge sind. Wenn man die Zahl 0 zur Indexmenge zählt, ist die -te Partialsumme die Summe der ersten (von den unendlich vielen) Summanden. Falls die Folge dieser Partialsummen einen Grenzwert besitzt, so wird dieser der Wert oder die Summe der Reihe genannt.

DefinitionBearbeiten

Ist eine beliebige Folge   gegeben, kann man aus ihr eine neue Folge   der Partialsummen bilden. Die  -te Partialsumme ist die Summe der ersten   Glieder von  , ihre Definition lautet:

 

Die Folge   der  -ten Partialsummen heißt Reihe. Falls die Reihe (also die Folge der Partialsummen) konvergiert, so nennt man ihren Grenzwert

 

Wert der Reihe oder Summe der Reihe.[3]

NotationBearbeiten

Für Reihen gibt es je nach Kontext unterschiedliche Notationen. In diesem Artikel werden als Indizes für die Glieder von Folge und Reihe die natürlichen Zahlen einschließlich der Null verwendet. Bei manchen Anwendungen ist es zweckmäßig, die Summation erst beim Index 1, 2 oder höher zu beginnen, selten kommen auch negative Indizes vor (siehe Laurent-Reihe). Mit Hilfe des Summenzeichens können die einzelnen Glieder der Reihe auch abgekürzt als

 

geschrieben werden. Ebenso geht man bei der Folge der Einzelglieder vor und schreibt kurz

 

Häufig werden ein Teil oder alle Indizes weggelassen, wenn Missverständnisse ausgeschlossen sind. Ist etwa wie hier im Kontext von Berechnungen mit unendlichen Reihen klar, dass generell bei 0 zu nummerieren angefangen wird, so steht

  für  

Auswertung und EinteilungBearbeiten

Wenn   und damit auch   für alle nichtnegativen ganzen Indizes i bzw. n definiert sind, lässt sich somit eine unendliche Reihe bilden: wenn der Grenzwert der Folge der Partialsummen

 

existiert, sagt man, die Reihe konvergiert; den Grenzwert S nennt man die Summe der Reihe oder den Wert der Reihe. Mit Hilfe des Summenzeichens kann diese Summe auch abgekürzt als

 

geschrieben werden.

Eine Reihe   heißt divergent oder ihr Grenzwert nicht existent, wenn die Reihe nicht konvergiert. Sie heißt bestimmt divergent oder uneigentlich konvergent, wenn die Teilsummen   gegen -∞ oder +∞ streben. Andernfalls heißt die Reihe unbestimmt divergent; dabei kann sie Häufungspunkte haben oder auch nicht.

Mit verschiedenen Konvergenzkriterien lässt sich feststellen, ob eine Reihe konvergiert.

BeispieleBearbeiten

 
Die geometrische Reihe   für  ,   oder   konvergiert.

Eine klassische Reihe ist die geometrische Reihe, der Name ergibt sich aus der geometrischen Folge (  für  ). Die geometrische Reihe ist also:

 

Eine spezielle geometrische Reihe ist

 

Diese Schreibweise bezeichnet nach der oben gegebenen Darstellung den Grenzwert der Folge

 

Man kann die Konvergenz dieser Reihe auf der Zahlengeraden visualisieren: Stellen wir uns eine Linie mit der Länge zwei vor, auf der aufeinanderfolgende Abschnitte mit den Längen 1, 1/2, 1/4 usw. markiert sind. Es gibt auf dieser Linie immer noch Platz für einen weiteren Abschnitt, da immer noch so viel Platz ist, wie der letzte Abschnitt lang war: Wenn wir die Strecke 1/2 markiert haben, haben wir insgesamt 3/2 verbraucht, es bleiben also noch 1/2 übrig. Wenn wir nun 1/4 wegstreichen, bleibt ein weiteres 1/4 übrig etc. Da das „Reststück“ beliebig klein wird, ist der Grenzwert gleich 2.

Konvergente geometrische Reihen sind auch ein Gegenstand der Paradoxa von Zenon.

Ein Beispiel für eine divergente Reihe mit mehreren Häufungspunkten ist die Summe über die Folge +1,-1,+1,-1,… Die Reihe wechselt zwischen den Werten 1 und 0 (die Folge hingegen wechselt zwischen 1 und −1).

Semantik und VergleichBearbeiten

Dem Symbol

 

kommen hier zwei unterschiedliche Rollen zu, die dem Kontext entnommen werden müssen. Einmal symbolisiert es den Wert der Reihe, der im Fall konvergenter Reihen existiert oder im Fall divergenter Reihen nicht existiert. Andererseits repräsentiert es die Reihe als Folge der Partialsummen, unabhängig vom Konvergenzverhalten.

Rechnen mit ReihenBearbeiten

Im Gegensatz zu gewöhnlichen (endlichen) Summen gelten für Reihen einige übliche Regeln der Addition nur bedingt. Man kann also nicht bzw. nur unter bestimmten Voraussetzungen mit ihnen wie mit endlichen Summenausdrücken rechnen.

Summen und VielfacheBearbeiten

Man kann konvergente Reihen gliedweise addieren, subtrahieren oder mit einem festen Faktor (aber nicht einer anderen Reihe) multiplizieren (vervielfachen). Die resultierenden Reihen sind ebenfalls konvergent, und ihr Grenzwert ist die Summe bzw. Differenz der Grenzwerte der Ausgangsreihen bzw. das Vielfache des Grenzwertes der Ausgangsreihe. D. h.

 
 
 

ProdukteBearbeiten

Man kann absolut konvergente Reihen gliedweise miteinander multiplizieren. Die Produktreihe ist ebenfalls absolut konvergent und ihr Grenzwert ist das Produkt der Grenzwerte der Ausgangsreihen. D. h.

 

Da die Schreibweise (auf der linken Seite der Gleichung) der Produktreihe mit zwei Indizes in bestimmten Zusammenhängen „unhandlich“ ist, wird die Produktreihe auch in Form des Cauchyprodukts geschrieben. Der Name ergibt sich daraus, dass die Glieder der Produktreihe mit Hilfe des cauchyschen Diagonalverfahrens gebildet werden, dabei werden die Glieder der Ausgangsfolgen in einem quadratischen Schema paarweise angeordnet, und die (durchnummerierten) Diagonalen dieses Schemas bilden die Produktglieder. Für die Produktreihe braucht man dann nur noch einen einzelnen Index. Die Produktreihe hat dann die folgende Form:

 

Rechnen innerhalb der ReiheBearbeiten

Klammerung (Assoziativität)Bearbeiten

Man kann innerhalb einer konvergenten Reihe die Glieder beliebig durch Klammern zusammenfassen. Man kann also beliebig viele Klammern in den „unendlichen Summenausdruck“ einfügen, man darf sie nur nicht innerhalb eines (aus mehreren Termen zusammengesetzten) Gliedes setzen. Der Wert der Reihe ändert sich durch die zusätzlich eingefügte Klammerung dann nicht.

Dies gilt für divergente Reihen im Allgemeinen nicht, was man leicht am folgenden Beispiel erkennt.

Die Reihe

 

divergiert, während die beklammerte Reihe

 

gegen Null konvergiert und die anders beklammerte Reihe

 

gegen noch eine andere Zahl konvergiert.

Andererseits kann man aber keine Klammern ohne Weiteres weglassen. Man kann das aber immer dann, wenn die resultierende Reihe wieder konvergent ist. In diesem Falle bleibt auch der Reihenwert unverändert. Falls die „minderbeklammerte“ Reihe nämlich konvergent ist, kann man ihr dieselben Klammern wieder hinzufügen, die man zuvor weggenommen hat, und die Gleichheit des Grenzwertes ergibt sich nach dem oben Gesagten, wenn man darin die Rollen vertauscht und die „minderbeklammerte“ Reihe nun als Reihe betrachtet, der man Klammern hinzufügt.

Umordnung (Kommutativität)Bearbeiten

Eine Umordnung einer Reihe wird durch eine Permutation ihrer Indexmenge dargestellt. Ist die Indexmenge zum Beispiel (wie meist) die Menge   der natürlichen Zahlen und  , eine bijektive Abbildung der natürlichen Zahlen auf sich, so heißt

 

eine Umordnung der Reihe

 

Man kann konvergente Reihen unter Beibehaltung ihres Wertes dann und nur dann beliebig umordnen, wenn sie unbedingt bzw. absolut konvergent sind. Es gilt für unbedingt (oder absolut) konvergente Reihen:

  für alle bijektiven  .

Bedingt konvergente Reihen dürfen nur endlich umgeordnet werden, d. h. ab einem gewissen Index muss für die Umordnung   gelten.

Absolute und unbedingte KonvergenzBearbeiten

Eine Reihe   heißt absolut konvergent, wenn die Reihe ihrer Absolutglieder   konvergiert.

Eine konvergente Reihe wird formal als unbedingt konvergent definiert, wenn jede ihrer Umordnungen wieder konvergiert und denselben Grenzwert hat. Die letzte Eigenschaft braucht jedoch nicht vorausgesetzt zu werden, da jede Reihe, deren sämtliche Umordnungen konvergent sind, auch für jede Umordnung denselben Wert hat. Eine konvergente Reihe, die nicht unbedingt konvergent ist, heißt bedingt konvergent.

In endlich-dimensionalen Räumen gilt der Satz:

Eine Reihe ist genau dann unbedingt konvergent, wenn sie absolut konvergent ist.

Für eine bedingt konvergente Reihe kann man eine beliebige Zahl vorgeben und dann eine Umordnung dieser Reihe finden, die gegen genau diese Zahl konvergiert (riemannscher Umordnungssatz). Insbesondere kann man als Zahl auch keine Zahl vorgeben, soll heißen, dass die Reihe divergieren solle, und findet eine geeignete Umordnung, die das tut.

KonvergenzkriterienBearbeiten

 
Entscheidungsbaum zur Bestimmung des Konvergenzverhaltens von Reihen.

Im Folgenden seien die Zahlen   stets reelle oder komplexe Zahlen, und die Reihe   definiert als

 

Zum Beweis der Konvergenz dieser Reihe gibt es diverse Konvergenzkriterien, die teils die bedingte, teils die stärkere absolute Konvergenz (Konvergenz der Reihe der Beträge der Glieder) zeigen:

Nullfolgenkriterium

Wenn die Reihe   konvergiert, dann konvergiert die Folge ( ) der Summanden für   gegen 0. Formuliert: Ist ( ) keine Nullfolge, so divergiert die entsprechende Reihe.
Die Umkehrung ist nicht allgemeingültig (ein Gegenbeispiel ist die harmonische Reihe).

Majorantenkriterium

Wenn alle Glieder   der Reihe   nichtnegative reelle Zahlen sind,   konvergiert und für alle  

 

mit reellen oder komplexen Zahlen   gilt, dann konvergiert auch die Reihe

 

absolut, und es ist  .

Minorantenkriterium

Wenn alle Glieder   der Reihe   nichtnegative reelle Zahlen sind,   divergiert und für alle  

 

mit nichtnegativen reellen Zahlen   gilt, dann divergiert auch die Reihe

 .
Quotientenkriterium

Wenn eine Konstante   und ein Index   existiert, sodass für alle   gilt

 

dann konvergiert die Reihe   absolut.

Wurzelkriterium

Wenn eine Konstante   und ein Index   existiert, sodass für alle   gilt

 

dann konvergiert die Reihe   absolut.

Integralkriterium

Ist   eine nichtnegative, monoton fallende Funktion mit

  für alle  ,

dann konvergiert   genau dann, wenn das Integral

 

existiert.

Leibniz-Kriterium

Eine Reihe der Form

 

mit nichtnegativen   wird alternierende Reihe genannt. Eine solche Reihe konvergiert, wenn die Folge   monoton gegen 0 konvergiert. Die Umkehrung ist nicht allgemeingültig.

BeispieleBearbeiten

  • Eine geometrische Reihe   konvergiert genau dann, wenn  .
  • Die Dirichletreihe   konvergiert für   und divergiert für  , was mit dem Integralkriterium gezeigt werden kann. Als Funktion von   aufgefasst, ergibt diese Reihe die Riemannsche Zetafunktion.
  • Die Teleskopreihe   konvergiert genau dann, wenn die Folge   für   gegen eine Zahl   konvergiert. Der Wert der Reihe ist dann  .

AnwendungenBearbeiten

Darstellung mathematischer KonstantenBearbeiten

Neben der Konvergenz und dem numerischen Wert einer Reihe ist auch der symbolische Wert einer Reihe von Bedeutung. Beispielsweise lassen sich so mathematische Konstanten darstellen und numerisch berechnen. Beispiel für   (natürlicher Logarithmus)

  oder  

Für wichtige Reihendarstellungen existieren Tabellierungen in Reihentafeln.

Reihen von FunktionenBearbeiten

Anstatt Folgen von Zahlen kann man auch Folgen von Funktionen betrachten und entsprechend Reihen definieren. Hier kommt zur Frage der Konvergenz noch die nach den Eigenschaften der Grenzfunktion hinzu. Umgekehrt kann man fragen, durch welche Reihe sich eine Funktion darstellen lässt. So eine Darstellung nennt sich Reihenentwicklung.

PotenzreihenBearbeiten

Einige wichtige Funktionen können als Taylorreihen dargestellt werden. Diese sind bestimmte unendliche Reihen, in denen Potenzen einer unabhängigen Variable vorkommen. Solche Reihen werden allgemein Potenzreihen genannt. Werden auch negative Potenzen der Variablen zugelassen, spricht man von Laurentreihen.

FourierreihenBearbeiten

Als Fourierreihe einer Funktion bezeichnet man ihre Entwicklung nach trigonometrischen Funktionen   und    . Die Eulersche Reihe ist ebenfalls von diesem Typ.

DirichletreihenBearbeiten

Als Dirichletreihe bezeichnet man eine Entwicklung

  mit  

Ein wichtiges Beispiel ist die Reihendarstellung der Riemannschen Zetafunktion

  mit  .

PräfixsummeBearbeiten

In der Informatik wird mit Präfixsumme ein Algorithmus bezeichnet, der jeden Eintrag   eines Arrays durch die Partialsumme   ersetzt.[4][5] Die Präfixsumme kann parallelisiert werden und ist daher ein grundlegender Algorithmus für Rechnersysteme mit mehreren Prozessorkernen, GPUs oder Rechnerclustern.

WeblinksBearbeiten

 Wikibooks: Mathe für Nicht-Freaks: Reihe – Lern- und Lehrmaterialien

LiteraturBearbeiten

  • Konrad Knopp: Theorie und Anwendung der unendlichen Reihen. 6. Auflage. Springer, Berlin u. a. 1996, ISBN 3-540-59111-7, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 2).
  • Izrail Solomonovic Gradshteyn, Iosif Mojseevic Ryzhik: Table of Integrals, Series and Products. Herausgegeben von Alan Jeffrey und Daniel Zwillinger. 7. edition. Elsevier Academic Press, Amsterdam u. a. 2007, ISBN 978-0-12-373637-6.

EinzelnachweiseBearbeiten

  1. Summenfolge. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  2. Reihe. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  3. Otto Forster: Analysis Band 1: Differential- und Integralrechnung einer Veränderlichen. Vieweg-Verlag, 8. Aufl. 2006, ISBN 3-528-67224-2, S. 37.
  4. Michelle Kuttel (2012): Parallel Java. §5 Vorlesungsfolien
  5. Stefan Edelkamp (2010): Algorithm Engineering. Vorlesungsfolien (Memento des Originals vom 11. Mai 2015 im Internet Archive)   Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.tzi.de