Ein Annuitätendarlehen ist ein Tilgungsdarlehen mit konstanten Rückzahlungsbeträgen (Raten). Im Gegensatz zum Ratenkredit bleibt die Höhe der zu zahlenden Rate über die gesamte Laufzeit gleich (sofern eine Zinsbindungsfrist über die gesamte Laufzeit vereinbart wurde). Die Annuitätenrate oder kurz Annuität setzt sich aus einem Zins- und einem Tilgungsanteil zusammen. Da mit jeder Rate ein Teil der Restschuld getilgt wird, verringert sich der Zinsanteil zugunsten des Tilgungsanteils. Am Ende der Laufzeit ist die Kreditschuld vollständig getilgt.

Tilgungs- und Zinsanteil einer Annuität (100.000 €, gesamte Laufzeit bei 2,5 % Zinsen). Wie die gestrichelte grüne Linie zeigt, bleibt die Annuität über die gesamte Laufzeit gleich. Alternativ kann dies auch festgestellt werden, indem der blaue (entspricht den Zinsen) und rote Balken (entspricht der Tilgung) für ein beliebiges Jahr addiert werden.

Der Zinssatz wird bei Abschluss eines Annuitätendarlehens über einen vertraglich vereinbarten Zeitraum festgeschrieben. Dieser Zeitraum kann sich auch über die gesamte Kreditlaufzeit erstrecken. Die Tilgung sollte im ersten Jahr mindestens 1 Prozent der Kredit(rest)summe betragen. Sie steigt dann mit fortschreitender Ratenzahl bis auf theoretisch 100 % der Kreditrestsumme im letzten Jahr.

Bestimmung der Annuität

Bearbeiten

Die Höhe   der Annuität eines Kredites mit der Kreditsumme   bei einem Zinssatz von   bzw. einem Aufzinsungsfaktor   und einer Laufzeit von   Jahren lässt sich mittels

 

berechnen. Der Faktor

 

heißt dabei Annuitätenfaktor oder Kapitalwiedergewinnungsfaktor (  bzw.  ) und ist gleich dem Kehrwert des Rentenbarwertfaktors.[1][2]

Beispiel

Bearbeiten

Bei einem Zinssatz von 3 % und einer Laufzeit von fünf Jahren beträgt der Annuitätenfaktor

 .

Beträgt die Kreditsumme 20.000 Euro, so erhält man eine jährliche Annuität von

 

Bestimmung der Laufzeit

Bearbeiten

Will man die Laufzeit in Abhängigkeit von  ,   und   berechnen, so muss man lediglich die obige Formel für die Annuität nach   auflösen. Man erhält dann

 

Findet die Zahlung der Raten mehrmals im Jahr statt, ergibt sich die leicht veränderte Formel

 

für die Gesamtzahl der Raten (nicht Jahre). Hierbei entspricht   der Anzahl der Raten pro Jahr und   ist dabei die sogenannte Anfangstilgung, die die Minderungsrate des Darlehens nach der ersten Ratenzahlung angibt. Sie ergibt sich aus der Formel

 ,

woraus sich

 

ergibt.

Die Berechnungen gelten für einen angenommenen, über die gesamte Laufzeit gleichbleibenden, Zinssatz. Die tatsächliche Laufzeit kann deshalb in der Praxis unter Umständen erheblich von der vorausberechneten abweichen.

Bestimmung der Tilgungsraten

Bearbeiten

Bei Analyse eines Tilgungsplans lässt sich erkennen, dass die Tilgungsraten   eine geometrische Folge mit dem Zinsfaktor   bilden:

 

Somit lassen sich die Tilgungsraten aller Perioden auf die erste Tilgungsrate   zurückführen. Diese lässt sich leicht über zwei alternative Möglichkeiten bestimmen:

Bei bekannter Annuität   Bei bekannter Laufzeit  
Annuität ist als Summe von Tilgungsrate und Zins definiert,

daher gilt für die erste Tilgungsrate:

 

wobei  

Die Summe aller Tilgungsraten   über die Laufzeit   muss der Kreditsumme   entsprechen, also:

 
Die Summe lässt sich mit Hilfe der Summenformel für geometrische Reihen in folgenden geschlossenen Ausdruck überführen:
 
Nach   aufgelöst, ergibt sich schließlich
 

Nun kann   in der obigen Formel durch den jeweiligen Ausdruck ersetzt werden:
   

Weitere Formeln

Bearbeiten

Die Restschuld   nach   Perioden lässt sich berechnen durch

 

Wenn statt der Laufzeit   die Annuität   bekannt ist, dann lässt sich die Restschuld   nach   Perioden berechnen durch:

 

Die Zinszahlung der  -ten Periode ( ) ergibt sich aus der Restschuld am Ende der vorhergehenden Periode multipliziert mit dem Zinssatz  :

 

Interessant ist auch die Summe der geleisteten Zinszahlungen nach   Perioden:

 

Daraus ergibt sich die Summe der zu leistenden Zinszahlungen bis zur Tilgung des Annuitätendarlehens (  Perioden):

 

Die Tilgungsrate in der  -ten Periode ( ) ist gegeben durch die Differenz zwischen Annuität   und Zinszahlung  :

 

Bei Annuitätentilgung nimmt die Tilgung exponentiell zu.

Annuitätenrechnung der Banken

Bearbeiten

Bei der Anwendung der oben genannten Formeln stellt man im Vergleich mit Angeboten einer Bank oder mit Online-Annuitätenrechnern häufig Unterschiede fest. In diesem Abschnitt wird beschrieben, wie diese Unterschiede zustande kommen. Um diesen Sachverhalt möglichst anschaulich zu beschreiben, erfolgt eine Beschränkung auf den Fall der monatlichen Ratenzahlung. Alle anderen Fälle wie vierteljährliche oder halbjährliche Ratenzahlungen sind analog zu betrachten. In der folgenden Tabelle sind alle Bezeichnungen der Größen dargestellt, die im Folgenden verwendet werden.

Bezeichnung Bedeutung Einheit
  Kreditsumme EUR
  Jährliche Rate EUR
  Jährlicher Zins -
  Anfangstilgung -
  Laufzeit Jahre
  Restschuld nach   Monaten EUR
  Monatliche Rate EUR
  Monatlicher Zins -
  Nominalzins nach Definition der Banken -
  Anfangstilgung nach Definition der Banken -
  Jährliche Rate nach Definition der Banken EUR

Abweichung von Zins, Rate und Anfangstilgung

Bearbeiten

Die Banken werben häufig mit einem Zins, dem sogenannten Nominalzins. Dieser Nominalzins der Banken stimmt aber nur dann mit dem tatsächlichen Zins überein, wenn die Raten nicht unterjährig bezahlt werden. Bei der Berechnung von jährlicher zu monatlicher Rate teilt die Bank die jährliche Rate durch 12. Sie vernachlässigt hierbei, dass sie die jährliche Rate nun über das Jahr verteilt früher bekommt. Das erhöht den eigentlichen Zins   gegenüber dem von der Bank angegebenen Nominalzins. Die Werte, wie sie von der Bank festgelegt werden, werden mit einem Hut   versehen, wenn sie mit den tatsächlichen Werten nicht übereinstimmen. Die Werte, die in jedem Fall übereinstimmen, sind die Kreditsumme  , der monatliche Zins   und die monatliche Rate  . Die Bank geht aus von der Kreditsumme  , dem jährlichen Zins   und der Anfangstilgung  . Die jährliche Rate   berechnet sie aus

 

und die monatliche Rate aus

 

Hieraus werden nun die tatsächlichen Werte berechnet. Zunächst ergibt sich der monatliche Zins aus

 

Der tatsächliche Zins   ergibt sich aus der Gleichung

 

Dieser tatsächliche Zins   muss nach der Preisangabenverordnung in dem effektiven Jahreszins berücksichtigt und ausgewiesen werden. Wenn keine weiteren Gebühren anfallen, entspricht   dem effektiven Jahreszins. Für die tatsächliche jährliche Rate   gilt

 

Der tatsächliche Zins und die tatsächliche jährliche Rate sind somit bei monatlicher Ratenzahlung höher als jene, die von der Bank ausgewiesen werden. Für kleine   ergeben sich kleine Abweichungen, für große   jedoch sehr große Abweichungen wie folgende Beispiele zeigen:

  • Bei   ergibt sich  . Der tatsächliche Zins liegt also 0,5 % höher als der Nominalzins der Bank.
  • Bei   ergibt sich  . Der tatsächliche Zins liegt also 34025 % höher als der Nominalzins der Bank.

Nun wird mit bekannten Formeln die (weiterhin auf das Jahr bezogene) tatsächliche Anfangstilgung   und die Laufzeit   in Jahren ermittelt.

 

Ein Tilgungsplan auf Basis von monatlichen Größen ist somit korrekt, ein Tilgungsplan auf Basis der jährlichen Größen der Bank wäre dagegen nicht korrekt, wenn auf beschriebene Art monatliche Ratenzahlung vereinbart wird.

Berechnung der Laufzeit und der letzten Rate

Bearbeiten

Die Laufzeit ist in der Regel eine krumme Zahl. In der Praxis wird die Laufzeit in Monaten berechnet, aufgerundet und im letzten Monat dann eine kleinere Rate vereinbart. Die Anfangstilgung im ersten Monat   ist definiert durch

 

Es sei   die Laufzeit in Monaten. Dann ist   die abgerundete Laufzeit in Monaten, die angibt, wie viele volle monatliche Raten gezahlt werden müssen. Die tatsächliche Laufzeit in Monaten erhält man durch   aufgerundet, wobei die letzte Rate üblicherweise niedriger ist. Die letzte Monatsrate wird wie folgt berechnet. Die Restschuld   vor der letzten Rate beträgt

 

und die letzte Rate lässt sich daher ermitteln über

 

Im Übrigen gelten die folgenden nützlichen Beziehungen:

 

Wenn man mit   die Anzahl der unterjährigen Ratenzahlungen bezeichnet, ergibt sich also allgemein für die Laufzeit in Jahren:

 

Unterjährige Annuitätentilgung

Bearbeiten

Mit den Formeln der unterjährigen Annuitätentilgung lassen sich auch die Darlehensfälle berechnen, bei denen die Zahlung der Annuität mehrmals jährlich, zum Beispiel monatlich oder vierteljährlich, statt nur einmal am Jahresende stattfindet.

Ist   die Anzahl der Zahlungstermine pro Jahr, werden die   ersten Zahlungen innerhalb des Jahres dabei für gewöhnlich nur als Tilgung betrachtet, enthalten also noch keinen Zinsanteil, der erst der letzten Zahlung zum Jahresende für das gesamte zurückliegende Jahr in Gänze zugeschlagen wird.

Die Höhe der  -mal jährlich zu zahlenden Einzelannuitäten   errechnet sich dabei gemäß den Formeln für die lineare Verzinsung bei unterjährigen Laufzeiten aus der Jahresannuität  , die sich ihrerseits wie bei der jährlichen Annuitätentilgung als Produkt der Kreditsumme und des Annuitätenfaktors ergibt, also eine stets nachschüssige Jahresrente ist.

Ist   der effektive Zinssatz p. a. und   die Gesamtlaufzeit des Darlehens in Jahren, beträgt   damit bei vorschüssiger Ratenzahlung

 .

Bei nachschüssiger Ratenzahlung hingegen gilt:

 

Soll daraus, was für den Vergleich verschiedener Kreditangebote von Interesse sein kann, der vom Kreditgeber zugrundegelegte Zinsfaktor   bestimmt werden, ergibt dieser sich für eine nachschüssige Zahlung der Raten   nach Umstellung der letztgenannten Formel als die maximale der Lösungen nachstehenden Polynoms (das als triviale Lösung auch stets den Wert   besitzt):

 .

Prozentannuitäten-Tilgung

Bearbeiten

Eine Sonderform der Annuitäten-Tilgung ist die sogen. Prozentannuität, bei der die Höhe der ersten Tilgungsrate nicht über die Differenz zwischen Annuität und Sollzinsen, sondern – von letzteren unabhängig – als fixer Prozentsatz des Darlehensbetrages definiert wird.[3][4]

Anwendungsgebiete

Bearbeiten

Privatdarlehen von Banken werden oft als Annuitätendarlehen vergeben, da die gleich bleibende Rate eine gute Kalkulationsgrundlage für den Kunden bietet.

Das Annuitätendarlehen ist eine Form der Immobilienfinanzierung. In Deutschland wird der Zinssatz üblicherweise für fünf, zehn oder fünfzehn Jahre festgeschrieben. Danach kann der Vertrag gekündigt werden bzw. ein neuer Zinssatz für die Weiterführung des Vertrages muss verhandelt werden.

Alternativ kann auch ein variabler Zinssatz vereinbart werden, der in regelmäßigen Abständen aktualisiert wird, etwa in Abhängigkeit vom EURIBOR oder einem anderen Index. Eine weitere Option ist es, die Annuitäten durch gleich bleibende Monatsraten zu ersetzen, bei denen jeweils ein Zwölftel des nominalen Jahreszinssatzes zu zahlen ist. Diese Kombination (monatliche Tilgung bei gleich bleibenden Raten, die jedoch jährlich von Zinsänderungen betroffen werden können) ist etwa in Spanien die üblichste Form.

Siehe auch Hypothek und Grundschuld.

Vergleich mit anderen Darlehensarten

Bearbeiten

Tilgungspläne für die drei gängigsten Darlehensarten: Kapital: 100.000 Euro, Zinssatz: 3,00 % p. a., Laufzeit: 5 Jahre, Zins und Tilgung jährlich nachschüssig

Jahr Restschuld Zins Tilgung Rate
Tilgungsdarlehen
1 100.000 € 3.000 € 20.000 € 23.000 €
2 80.000 € 2.400 € 20.000 € 22.400 €
3 60.000 € 1.800 € 20.000 € 21.800 €
4 40.000 € 1.200 € 20.000 € 21.200 €
5 20.000 € 600 € 20.000 € 20.600 €
Summen 9.000 € 100.000 € 109.000 €
Annuitätendarlehen
Jahr Restschuld Zins Tilgung Rate
1 100.000 € 3.000 € 18.835 € 21.835,46 €
2 81.165 € 2.435 € 19.401 € 21.835,46 €
3 61.764 € 1.853 € 19.983 € 21.835,46 €
4 41.781 € 1.253 € 20.582 € 21.835,46 €
5 21.199 € 636 € 21.199 € 21.835,46 €
Summen 9.177 € 100.000 € 109.177 €
Fälligkeitsdarlehen
Jahr Restschuld Zins Tilgung Rate
1 100.000 € 3.000 € 0 € 3.000 €
2 100.000 € 3.000 € 0 € 3.000 €
3 100.000 € 3.000 € 0 € 3.000 €
4 100.000 € 3.000 € 0 € 3.000 €
5 100.000 € 3.000 € 100.000 € 103.000 €
Summen 15.000 € 100.000 € 115.000 €

Einzelnachweise

Bearbeiten
  1. Bernd Luderer: Starthilfe Finanzmathematik. 4. Auflage. Springer Spektrum, Wiesbaden 2015, ISBN 978-3-658-08424-0, S. 91.
  2. Lutz Kruschwitz: Finanzmathematik. 6. Auflage. De Gruyter Oldenbourg, Berlin / Boston 2018, ISBN 978-3-11-058737-1, S. 53.
  3. Bernd Luderer, Uwe Würker; Einstieg in die Wirtschaftsmathematik; 9. Auflage, Springer-Verlag, 2014; S. 112–113.
  4. Manfred Precht, Karl Voit, Roland Kraft; Mathematik 2 für Nichtmathematiker; Oldenbourg Verlag, 2005, S. 114.