Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen werden unter Tangens (Begriffsklärung) aufgeführt
Tangens und Kotangens sind trigonometrische Funktionen und spielen in der Mathematik und ihren Anwendungsgebieten eine herausragende Rolle. Der Tangens des Winkels wird mit bezeichnet, der Kotangens des Winkels mit . In älterer Literatur findet man auch die Schreibweisen für den Tangens und für den Kotangens.
Schaubild der Tangensfunktion (Argument x im Bogenmaß)
Schaubild der Kotangensfunktion (Argument x im Bogenmaß)
Ersten Gebrauch der Tangensfunktion machte der persische Mathematiker Abu al-Wafa (940–998). Die Bezeichnung „Tangens“ stammt von dem Mathematiker Thomas Finck (1561–1656), der sie 1583 einführte. Die Bezeichnung „Kotangens“ entwickelte sich aus complementi tangens, also Tangens des Komplementärwinkels.[1]
Die Wahl des Namens Tangens erklärt sich unmittelbar durch die Definition im Einheitskreis. Die Funktionswerte entsprechen der Länge eines Tangentenabschnitts:
Ein rechtwinkliges Dreieck, mit Bezeichnungen der drei Seiten bezogen auf einen variablen Winkel α am Punkt A und einen rechten Winkel am Punkt C
In einem rechtwinkligen Dreieck ist der Tangens eines Winkels das Längenverhältnis von Gegenkathete zu Ankathete und der Kotangens das Längenverhältnis von Ankathete zu Gegenkathete:
Sinus und Kosinus können auch auf einer axiomatischen Basis behandelt werden, weshalb für den Tangens und Kotangens das Gleiche gilt. Komplexe Argumente werden durch analytische Definition erlaubt. Dabei gilt eine Surjektivität von Sinus und Kosinus als komplexwertige Funktion. Daraus resultierend sind Tangens und Kotangens als komplexwertige Funktion ebenso surjektiv.
Tangens und Kotangens können als Quotienten von je zwei Taylorreihen dargestellt werden. Beruhend auf diesen Reihen lassen sich auch Arkustangens und Arkuskotangens als Quotienten von je zwei Taylorreihen darstellen (siehe Reihenentwicklung).
definiert werden,[2] wobei der Wertebereich je nach Anwendung die reellen Zahlen oder die komplexen Zahlen sind. Um zu verhindern, dass der Nenner Null wird, werden beim Definitionsbereich die Nullstellen der Cosinus-Funktion weggelassen:
im Reellen bzw.
im Komplexen.
Der Kotangens kann analog dazu durch
mit
definiert werden, wobei sich für dessen Definitionsbereich
im Reellen bzw.
im Komplexen ergibt, wenn gewährleistet werden soll, dass der Nenner ungleich Null ist.
Der Tangens ist in jedem Intervall zwischen zwei aufeinanderfolgenden Polstellen streng monoton steigend.
Der Kotangens ist in jedem Intervall zwischen zwei aufeinanderfolgenden Polstellen streng monoton fallend.
her. Somit kann man nach der Einschränkung auf die Intervalle resp. die Definitionsbereiche wenigstens um die Endpunkte resp. der Intervalle wieder erweitern und unter Anpassung der Wertebereiche die beiden Funktionen stetig fortsetzen zu
Die Partialbruchzerlegung des Kotangens stammt von Leonhard Euler (Introductio in Analysin Infinitorum, 1748, Paragraph 178) und wurde als eines seiner schönsten Resultate bezeichnet.[9] Ein einfacher Beweis benutzt den Herglotz-Trick.[10][11] Eine Folgerung aus der Formel ist die Ableitung der Werte der Riemannschen Zetafunktion an den geraden natürlichen Zahlen.
Zentralbinomialkoeffizient und ProduktreihenBearbeiten
Die Additionstheoreme für Tangens und Kotangens lauten:
Aus den Additionstheoremen folgt insbesondere für doppelte Winkel:
Darstellung des Sinus und Kosinus mithilfe des (Ko-)TangensBearbeiten
Die Auflösung der bereits aus dem obigen Abschnitt Ableitung bekannten Identitäten
nach bzw. ergibt bei Beschränkung auf den ersten Quadranten zunächst einmal Einfaches:
für
für
Die etwas komplizierteren Erweiterungen auf ganz lassen sich entweder kompakt als Grenzwert mit Hilfe der Floor-Funktion oder elementarer mittels abschnittsweise definierter Funktionen darstellen:
Der Tangens des halben Winkels kann dazu verwendet werden, verschiedene trigonometrische Funktionen durch rationale Ausdrücke zu beschreiben: Ist , so ist
Insbesondere ist
eine Parametrisierung des Einheitskreises mit Ausnahme des Punktes (der dem Parameter entspricht). Einem Parameterwert entspricht dabei der zweite Schnittpunkt der Verbindungsgeraden von und mit dem Einheitskreis (s. a. Einheitskreis#Rationale Parametrisierung).
Der Tangens liefert eine wichtige Kennzahl für lineare Funktionen: Jede lineare Funktion
besitzt als Graphen eine Gerade. Der Tangens des (orientierten) Winkels zwischen der positiven x-Richtung und der Geraden ist die Steigung der Geraden, d. h. . Dabei ist es egal, welche der beiden Halbgeraden man als zweiten Schenkel wählt.
Auch unter der Steigung einer Straße versteht man den Tangens des Steigungswinkels. Das Beispiel im Bild rechts zeigt eine Steigung von 10 % entsprechend einem Steigungswinkel von etwa 5,7° mit dem Tangens von 0,1.
Tangens und Kotangens können benutzt werden, um die zeitliche Abhängigkeit der Geschwindigkeit beim Wurf eines Körpers nach oben zu beschreiben, wenn für den Strömungswiderstand der Luft eine turbulente Strömung angesetzt wird (Newton-Reibung). Das Koordinatensystem werde so gelegt, dass die Ortsachse nach oben zeigt. Für die Geschwindigkeit gilt dann eine Differenzialgleichung der Form mit der Schwerebeschleunigung und einer Konstanten . Dann ergibt sich:
,
wobei die Grenzgeschwindigkeit ist, die beim Fall mit Luftwiderstand erreicht wird. Wegen der oben angegebenen engen Zusammenhänge zwischen Kotangens und Tangens kann man diese zeitliche Abhängigkeit auch genauso gut mit Hilfe des Tangens ausdrücken:
Diese Lösung gilt, bis der Körper den höchsten Punkt seiner Bahn erreicht hat (also wenn ist, das heißt für ), daran anschließend muss man den Tangens hyperbolicus verwenden, um den folgenden Fall mit Luftwiderstand zu beschreiben.
mit der imaginären Einheit. Der Tangens (als komplexe Funktion) hat die Ausnahmewerte , : Diese Werte werden niemals angenommen, da die konstanten Funktionen und Lösungen der Differentialgleichung sind und der Existenz- und Eindeutigkeitssatz ausschließt, dass zwei verschiedene Lösungen an derselben Stelle denselben Wert besitzen.
↑Josef Laub (Hrsg.): Lehrbuch der Mathematik für die Oberstufe der allgemeinbildenden höheren Schulen. 2. Band. 2. Auflage. Hölder-Pichler-Tempsky, Wien 1977, ISBN 3-209-00159-6, S. 223.
↑Aigner, Ziegler, Das Buch der Beweise, Springer 2018, S. 207
↑Dargestellt in Aigner, Ziegler, Das Buch der Beweise, 2018, S. 207 ff., Kapitel 26
↑Jürgen Elstrodt, Partialbruchzerlegung des Kotangens, Herglotz-Trick und die Weierstraßsche stetige, nirgends differenzierbare Funktion, Mathematische Semesterberichte, Band 45, 1998, S. 207–220
↑Derrick Henry Lehmer: Interesting Series Involving the Central Binomial Coefficient. Volume 92, 1985. Seite 452