Hauptmenü öffnen

Arkussekans und Arkuskosekans

trigonometrische Funktionen

Arkussekans und Arkuskosekans sind zyklometrische Funktionen. Sie sind die Umkehrfunktionen der Sekansfunktion bzw. der Kosekansfunktion und damit Arkusfunktionen. Da die Sekans- und die Kosekansfunktion periodisch sind, wird zur Umkehrung der Definitionsbereich von Sekans auf , und der Definitionsbereich von Kosekans auf beschränkt. Der Arkussekans wird mit bezeichnet und der Arkuskosekans mit . Seltener, vor allem aber im Englischen verwendet man auch die Schreibweisen und ; sie bedeuten aber nicht, dass bzw. die Kehrwerte von und sind.

Inhaltsverzeichnis

EigenschaftenBearbeiten

  Arkussekans Arkuskosekans
Funktions-
Graphen
   
Definitionsbereich    
Wertebereich    
Monotonie In beiden Abschnitten jeweils streng monoton steigend In beiden Abschnitten jeweils streng monoton fallend
Symmetrien Punktsymmetrie zum Punkt   Ungerade Funktion  
Asymptoten   für     für  
Nullstellen   keine
Sprungstellen keine keine
Polstellen keine keine
Extrema Minimum bei  , Maximum bei   Minimum bei  , Maximum bei  
Wendepunkte keine keine

ReihenentwicklungenBearbeiten

Die Reihenentwicklungen von Arkussekans und Arkuskosekans sind:

 
 

IntegraldarstellungenBearbeiten

Für den Arkussekans und Arkuskosekans existieren folgende Integraldarstellungen:

 
 

AbleitungenBearbeiten

Die Ableitungen sind gegeben durch:

 
 

IntegraleBearbeiten

 
 

Umrechnung und Beziehungen zu anderen zyklometrischen FunktionenBearbeiten

 
 

Siehe auchBearbeiten

WeblinksBearbeiten