Potenz (Mathematik)

mathematische Operation

Eine Potenz (von lateinisch potentia ‚Vermögen, Macht‘)[1][2] ist das Ergebnis des Potenzierens (der Exponentiation), das wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation ist. Wie beim Multiplizieren ein Summand wiederholt zu sich selbst addiert wird, so wird beim Potenzieren ein Faktor wiederholt mit sich selbst multipliziert. Dabei heißt die Zahl, die zu multiplizieren ist, Basis. Wie oft diese Basis als Faktor auftritt, wird durch den Exponenten angegeben. Man schreibt:

Die Schreibweise einer Potenz:

DefinitionBearbeiten

Man spricht   als a hoch n, n-te Potenz von a, a zur n-ten Potenz oder kurz a zur n-ten aus. Im Fall   ist auch a (zum) Quadrat üblich.

  heißt Basis (oder Grundzahl),   heißt Exponent (oder Hochzahl) der Potenz  . Das Ergebnis heißt Potenz oder Wert der Potenz.

Die Definitionsmengen sowohl auf seiten der Exponenten wie auf seiten der Basen werden im Folgenden Schritt für Schritt erweitert.

Natürliche ExponentenBearbeiten

Die Potenz   wird für reelle oder komplexe Zahlen   (allgemeiner Elemente eines beliebigen multiplikativen Monoids) und natürliche Zahlen   durch

 

definiert. Diese Definition gilt nur für   Damit die aus ihr (ebenfalls nur für  ) folgende Identität   auch noch für   gilt, wird   festgelegt. (Anmerkungen zum Fall   siehe unten.)

 
Potenzfunktionen mit positivem Exponenten graphisch
 
Potenzfunktionen mit negativem Exponenten graphisch

Die folgende Modifikation erleichtert die Behandlung des Sonderfalles  :

Die Potenzschreibweise bedeutet „Multipliziere die Zahl 1 mit der Grundzahl so oft, wie der Exponent angibt“, also

 

Der Exponent 0 sagt aus, dass die Zahl 1 keinmal mit der Grundzahl multipliziert wird und allein stehen bleibt, sodass man das Ergebnis 1 erhält.

 

Bei negativer Basis und geradzahligem Exponenten ist die Potenz positiv:

 

Bei negativer Basis und ungeradzahligem Exponenten ist die Potenz negativ:

 

Ganze negative ExponentenBearbeiten

Negative Exponenten bedeuten, dass man die zur Multiplikation inverse Operation (Division) durchführen soll. Also „Dividiere die Zahl 1 durch die Grundzahl so oft, wie der Betrag des Exponenten angibt“.

 

Für eine reelle Zahl   und eine natürliche Zahl   definiert man also:

 

Die analoge Definition wird auch in allgemeinerem Kontext angewandt, wann immer eine Multiplikation und inverse Elemente zur Verfügung stehen, beispielsweise bei invertierbaren Matrizen.

Rationale ExponentenBearbeiten

Sei   eine rationale Zahl mit der Bruchdarstellung   mit  . Für beliebige positive reelle   definiert man:

    (oder, was äquivalent ist,  )

Zum Beispiel gilt:

 

Der Wert der Potenz hängt nicht davon ab, welche Bruchdarstellung man gewählt hat.

Dieselbe Definition gilt auch für  . Daraus folgt, dass   für   gilt und dass   für   nicht existiert.

Wenn man Wurzeln aus negativen Zahlen mit ungeraden Wurzelexponenten zulässt, dann kann man diese Definition auf negative Basen und solche rationale Exponenten erweitern, deren gekürzte Bruchdarstellungen ungerade Nenner haben. Dazu gehören auch Potenzen mit negativen Basen und ganzen Exponenten, weil die Nenner in diesem Fall gleich   sind.

Für den Fall   kann man bei Berechnungen von   alle Bruchdarstellungen   mit ungeraden   benutzen. Aber bei Benutzung von Bruchdarstellungen mit geraden   können Fehler entstehen. Zum Beispiel gilt:

 

Reelle ExponentenBearbeiten

 
Exponentialfunktionen 0,5x, 2x, ex und 10x

Ist  ,   eine beliebige reelle Zahl und   eine Folge rationaler Zahlen, die gegen   konvergiert, so definiert man:

 

Diese Definition ist korrekt, d. h., der Grenzwert existiert immer und hängt nicht von der Auswahl der Folge   ab.

Zum Beispiel ist   gleich dem Grenzwert der Folge  

Die Definition lässt sich nicht auf den Fall   erweitern, da in diesem Fall der Grenzwert nicht zu existieren braucht bzw. für verschiedene Wahlen der Folge   sich verschiedene Grenzwerte ergeben.

Eine andere Definition ist über die natürliche Exponentialfunktion und den natürlichen Logarithmus möglich:

 

Dazu kann die Exponentialfunktion über ihre Reihenentwicklung definiert werden:

 

Insgesamt sind somit die Potenzen mit nichtnegativen Basen für alle reellen Exponenten definiert. Im Unterschied dazu sind die Potenzen mit negativen Basen nur für solche rationalen Exponenten definiert, deren gekürzte Bruchdarstellungen ungerade Nenner haben. Alle Potenzen mit negativen Basen und ganzen Exponenten gehören dazu. Potenzen negativer Zahlen mit anderen reellen Exponenten lassen sich im Bereich der komplexen Zahlen definieren, sind allerdings nicht reellwertig.

Technische SchreibweisenBearbeiten

Wenn hochgestelltes Schreiben nicht möglich ist (zum Beispiel in einem ASCII-Text), verwendet man oft die Schreibweise a^b (beispielsweise in Algol 60,[3] in TeX-Quellcode oder in Computeralgebrasystemen wie Maple), gelegentlich auch a**b (beispielsweise in Fortran, Perl oder Python). Aufgrund der verschiedenen Wahlen für die Definitionsbereiche von Basis und Exponent stellt Haskell gleich drei Potenzoperatoren zur Verfügung: a^b, a^^b und a**b.[4]

Zehnerpotenzen werden in der elektronischen Datenverarbeitung oder in der Anzeige auf Taschenrechnern häufig mit e oder E dargestellt.
Häufig anzutreffende Darstellung für z. B. −299792458 = −2,99792458·108

-2.9979 08 (8-stellige 7-Segment-Anzeige)
-2.997925 08 (10-stellige 7-Segment-Anzeige)
-2.9979256 08 (8-stellige 7-Segment-Anzeige + Exponentenfeld)
-2.99792458 E+08 (16-stellige Punktmatrixanzeige)
-2.99792458E+08 (Gleitkommadarstellung nach IEEE)

PotenzgesetzeBearbeiten

Um die nachfolgende Tabelle nicht zu überladen, betrachten wir nur Potenzen mit reellen Basen, die ungleich   sind. Betrachtet man aber eines der unten aufgeführten Gesetze mit nur positiven Exponenten, dann ist es auch für Potenzen zur Basis   gültig. Wenn von rationalen Zahlen mit geraden oder ungeraden Nennern gesprochen wird, dann sind stets die Nenner ihrer gekürzten Bruchdarstellungen gemeint.

  für alle   (Anmerkungen zu „null hoch null“ siehe unten)
  für beliebige reelle  , falls   ist;

für beliebige rationale   mit ungeraden Nennern, falls   ist.

  für beliebige natürliche   und ganze  , falls   ist;
für beliebige natürliche ungerade   und ganze  , falls   ist.
  für beliebige reelle  , falls   ist;
für beliebige rationale   mit ungeraden Nennern, falls   ist.
  für beliebige reelle  , falls   ist;
für beliebige rationale   mit ungeraden Nennern, falls   ist.
  für beliebige natürliche  , und für ganze  , wenn  ;

für beliebige reelle  , falls   sind;
für beliebige rationale   mit ungeraden Nennern, falls mindestens eine der Zahlen   negativ ist.

  für beliebige   und ganze   und, wenn  , auch  ;

für beliebige reelle  , falls   sind;
für beliebige rationale   mit ungeraden Nennern, falls mindestens eine der Zahlen   negativ ist.

  für beliebige ganze  , falls   ist;
für beliebige reelle  , falls   ist;
für beliebige rationale  , mit ungeraden Nennern, falls   ist.

Ist mindestens einer der Exponenten   irrational oder sind beide rational, aber hat mindestens eine der Zahlen   oder   einen geraden Nenner, dann ist einer der Ausdrücke   oder   für   undefiniert. Ansonsten sind beide definiert und stimmen entweder überein oder unterscheiden sich nur um ihr Vorzeichen. Für beliebige  , falls   ist, und für ganze  , falls   ist, stimmen sie immer überein. Für   und nicht ganzzahlige, aber rationale   sind diese beiden Fälle möglich. Welcher Fall eintritt, hängt von der Anzahl der Zweien in der Primzahlzerlegung des Zählers von   und des Nenners von   ab. Um das richtige Vorzeichen auf der rechten Seite der Formel   zu erkennen, ist es hinreichend, in diese Formel   einzusetzen. Das Vorzeichen, mit dem sie dann bei   gültig ist, bleibt richtig für alle   und gegebenem  . Gilt   für  , dann gilt   für alle   (und auch für  , falls alle Exponenten positiv sind).

Zum Beispiel gilt   und  . Darum ist   für alle   und somit   für alle reellen   gültig.

Das Potenzieren ist weder kommutativ, denn beispielsweise gilt  , noch assoziativ, denn beispielsweise gilt  .

Die Schreibweise   ohne Klammern bedeutet  , das Potenzieren ist demnach rechtsassoziativ, vgl. Operatorrangfolge.

Potenzen komplexer ZahlenBearbeiten

Für ganzzahlige Exponenten kann man Potenzen mit komplexen Basen wie im reellen Fall definieren. Für beliebige reelle oder komplexe Exponenten muss man jedoch anders vorgehen.

Der erste Schritt zur Definition von Potenzen mit komplexen Basen und Exponenten besteht in der stetigen Fortsetzung der Funktion   auf die Menge   der komplexen Zahlen. Dafür gibt es unterschiedliche Möglichkeiten. Zum Beispiel kann man die Reihe

 

benutzen, die für alle   konvergiert und für alle   die Funktion   angibt. Mithilfe von Operationen mit Reihen beweist man danach, dass

 

für beliebige   und die eulersche Formel

 

für beliebige   gelten. Daraus folgt die Formel

 ,

die man auch für die Definition von   benutzen kann. Diese Formel zeigt, dass die Wertemenge von   gleich   ist und dass diese Funktion periodisch ist mit Perioden  ,  .

Darum ist ihre Umkehrfunktion   mehrdeutig und für alle   definiert. Sie kann mithilfe der Formel   angegeben werden, wobei   der Betrag,   die Wertemenge des Arguments von   und   der übliche reelle Logarithmus ist. Der Hauptwert   dieser Funktion ergibt sich, wenn man den Hauptwert   anstatt   benutzt. Für reelle   ist nach der üblichen Definition  , deshalb stimmt diese Funktion   auf der Menge   mit dem üblichen reellen Logarithmus überein.

Für beliebige   mit   definiert man dann:

 

Das ist auch eine mehrdeutige Funktion, deren Hauptwert sich beim Einsatz von   anstatt   ergibt.

Aber für   verschwindet diese Mehrdeutigkeit und es entstehen übliche Potenzen mit ganzen Exponenten, die im ersten Abschnitt definiert wurden. Seien   und  , dann zieht die exponentielle Darstellung

 

nach sich, dass

 

gilt.

Für einen rationalen Exponenten   mit der gekürzten Bruchdarstellung  , mit  , hat die Potenz   genau   unterschiedliche Werte. Dies gilt insbesondere für  . Ist   ungerade und  , dann gibt es unter ihnen genau eine reelle Zahl, und das ist gerade die Zahl   aus dem Abschnitt 1.3. Ist   gerade und  , dann nimmt   keine reellen Werte an. Wenn aber   gerade und   ist, dann nimmt die Potenz   genau zwei reelle Werte an, die unterschiedliche Vorzeichen haben. Der positive davon ist in diesem Fall gerade gleich der Zahl   aus dem Abschnitt 1.3.

Als ein Beispiel betrachten wir die Potenz   hoch  .

Aus   und

  mit  

folgt

 

Daraus ergibt sich

  mit  

Der Hauptwert entspricht   und ist gleich  

Spezielle PotenzenBearbeiten

Ganzzahlige Potenzen von 10 (Zehnerpotenzen) bilden die Grundlage unseres Zahlensystems, des Dezimalsystems. Als Potenz geschrieben, z. B. 10−9 für 0,000000001 oder 1011 für 100 Milliarden, werden sie in den Naturwissenschaften zur Darstellung sehr großer oder sehr kleiner positiver Zahlen verwendet.

In der Mathematik und Technik besonders wichtig sind weiterhin Potenzen mit der Basis  , der Eulerschen Zahl.

Zweierpotenzen ergeben sich durch wiederholte Verdoppelung. Das überraschend schnelle Anwachsen der Zahlen macht Zweierpotenzen für Praxisbeispiele beliebt:

  • Ein Blatt Papier üblicher Größe lässt sich nur etwa siebenmal auf die halbe Größe falten. Es hat dann 128 Lagen und nur noch ein 128-tel seiner Fläche. Wenn man es 42-mal falten könnte, was nur theoretisch geht, entspräche seine Dicke von ca. 400.000 km etwa der Entfernung von der Erde zum Mond.
  • Jeder Mensch hat zwei biologische Eltern und die meisten haben vier Großeltern und acht Urgroßeltern. Ohne Ahnenverlust wären das vor 70 Generationen, zur Zeit Christi Geburt,   Ahnen, obwohl damals weniger als 109 Menschen gelebt haben.
  • Die Weizenkornlegende vom Erfinder des Schachspiels, der auf jedem Feld des Schachbrettes die Anzahl der Weizenkörner verdoppelte, verdeutlicht ebenfalls das rasante Wachstum der Zweierpotenzen.

Zur digitalen Verarbeitung von Daten am Computer wird das Dualsystem mit der Basis 2 verwendet. Die Größeneinheiten digitaler Speichersysteme sind daher die Zweierpotenzen, also die Potenzen zur Basis 2 (das sind 1, 2, 4, 8, 16, …). Ein Kibibyte (abgekürzt KiB) entspricht   Bytes.

Bei Schneeballsystemen, zum Beispiel sogenannten Schenkkreisen, werden zum Teil Systeme gestartet, die nicht nur eine Verdoppelung, sondern zum Beispiel eine Verachtfachung der neuen Mitglieder pro Schritt vorsehen. Solche Folgen wachsen derart schnell an, dass die Systeme bereits nach wenigen Schritten zwangsläufig kollabieren. Eine oft von den Initiatoren suggerierte Stabilität der Schneeballsysteme kann nicht bestehen. Sie sind daher aus gutem Grunde in vielen Ländern verboten.

Null hoch NullBearbeiten

AnalysisBearbeiten

 
Der Graph der Funktion   für   und   unter besonderem Augenmerk auf die Umgebung von  , in welcher (senkrechten) Geraden die Fläche endet. Die far­bi­gen Kurven zeigen ver­schie­den­e Annäherun­gen an (0;0) mit ver­schie­de­nen Grenzwerten für  .

Die Frage, ob und auf welche Weise dem Ausdruck   ein eindeutiger Wert zugeordnet werden kann, hat die Mathematiker spätestens seit der ersten Hälfte des 19. Jahrhunderts beschäftigt.

Die nebenstehende Abbildung veranschaulicht in ihrer 3D-Darstellung des Graphen der Funktion  , dass beliebige Werte   durch geeignete Wahl von Näherungspunkten   an den Ursprung   erreicht werden können. So ist z. B.

  1.  ,
  2.  ,
  3.  
      mit  ,   und  ,
  4.   und
  5.  .

Die Beispiele zeigen, dass die Funktion   an der Stelle   divergiert, denn ein Grenzwert von der Art    existiert offensichtlich nicht.

Ein Ausdruck, der unter dem Zeichen des Grenzwertes steht und der sich nicht auf Grund von Grenzwertsätzen und Stetigkeitseigenschaften berechnen lässt, heißt unbestimmter Ausdruck. Beispiele sind   sowie  . Letzterer Ausdruck entsteht bei Berechnungen von Potenzen, deren Basis und Exponent gleichzeitig gegen   geht, und kann nicht bestimmt werden, wenn es keine Beziehung zwischen den beiden gibt.

Als einen unter naheliegenden Umständen geeigneten Wert kann man   (das ist in der Abbildung die Gerade  , weil   für beliebige   gilt) oder   (der Strahl  , weil   für   gilt) ansehen. Es gibt aber auch moderne Analysislehrbücher[5], die die Potenz   (in dieser Form) ausdrücklich undefiniert lassen.

Bis Anfang des 19. Jahrhunderts haben Mathematiker anscheinend   gesetzt, ohne diese Festlegung genauer zu hinterfragen. Augustin-Louis Cauchy listete allerdings   gemeinsam mit anderen Ausdrücken wie   in einer Tabelle von unbestimmten Ausdrücken.[6] 1833 veröffentlichte Guillaume Libri eine Arbeit,[7] in der er wenig überzeugende Argumente für   präsentierte, die in der Folge kontrovers diskutiert wurden. Zur Verteidigung von Libri veröffentlichte August Ferdinand Möbius einen Beweis seines Lehrers Johann Friedrich Pfaff, der im Wesentlichen zeigte, dass    gilt, und einen angeblichen Beweis für   , falls    gelten, lieferte.[8] Die Korrektheit dieses Beweises wurde durch das Gegenbeispiel   und   rasch widerlegt.

Donald E. Knuth erwähnte 1992 im American Mathematical Monthly die Geschichte der Kontroverse und lehnte die Schlussfolgerung entschieden ab, dass   undefiniert gelassen wird.[9] Wenn man den Wert 1 für die Potenz   nicht voraussetzt, verlangen viele mathematische Aussagen wie zum Beispiel der binomische Satz

 

eine Sonderbehandlung[10] für die Fälle   (am Index  ) oder   (am Index  ) oder   (bei  ).

Ebenso kommt die Potenz   in Potenzreihen wie beispielsweise für die Exponentialfunktion

 

für   am Index   oder in der Summenformel für die geometrische Reihe

 

für   am Index   vor. Auch hier hilft die Konvention  .

Die angeführten Anwendungsfälle der Potenz   sind (wie außerordentlich viele ähnliche andere) Aussagen über Polynome, Multinome oder Potenzreihen, bei denen der Exponent   des Terms   konstant 0 ist und die Basis   – eher ausnahmsweise – den Wert 0 annehmen kann. In allen diesen Fällen sind die vorkommenden Terme stetige Summanden oder Faktoren, die für invertierbares   den Wert 1 haben, deren Wert dann auch für die Lücke   mühelos (und ganz im Sinn von  ) als 1 stetig ergänzt werden kann.

Knuth differenziert jedoch und schreibt: “Cauchy had good reason to consider   as an undefined limiting form” (deutsch etwa: Cauchy hatte guten Grund,   als unbestimmten Limes-Ausdruck zu betrachten), wobei er unter der limiting form   Grenzprozesse der Form   versteht, bei denen sich sowohl die Basis   wie der Exponent   für ein gewisses   der 0 beliebig nähern.

Mit dieser Maßgabe von D. E. Knuth sind die einfachen Fälle der Absolutglieder in Polynomen und Potenzreihen unmittelbar und pauschal gelöst, ohne dass es zu einem Konflikt mit einer detaillierten Betrachtung komplizierterer Grenzprozesse käme.

MengenlehreBearbeiten

In der Mengenlehre wird eine Potenz   zweier Mengen als Menge aller Funktionen von   nach   definiert, das heißt als Menge von Mengen   geordneter Paare  , sodass es zu jedem   genau ein   gibt mit  . Bezeichnet man mit   die Mächtigkeit von  , so gilt   (für endliche Mengen, aber auch darüber hinaus), was die Potenzschreibweise für Mengen rechtfertigt.[11] Nun gibt es genau eine auf der leeren Menge   definierte Funktion, das heißt Menge von Paaren mit obiger Eigenschaft, nämlich  . Daher gilt  , was auch für   richtig bleibt.

Die natürlichen Zahlen werden in der Mengenlehre rekursiv wie folgt definiert (siehe von Neumanns Modell der natürlichen Zahlen):

 

Demnach gilt in der Mengenlehre:

 

UmkehrfunktionenBearbeiten

Da das Kommutativgesetz beim Potenzieren nicht gilt, gibt es zwei Umkehrrechenarten:

  • das Wurzelziehen, um Gleichungen der Bauart   nach   aufzulösen, also um die Basis zu ermitteln, wenn der Exponent bekannt ist,
  • das Logarithmieren für Gleichungen des Typs  , also die Bestimmung des Exponenten, wenn die Basis gegeben ist.

VerallgemeinerungenBearbeiten

Allgemeinere BasenBearbeiten

Allgemein gibt es Potenzen mit positiven, ganzzahligen Exponenten in jeder Halbgruppe. Hat diese ein neutrales Element und wird dadurch zum Monoid  , so ist auch Exponent 0 sinnvoll,   ist dann immer das neutrale Element. Es gelten für alle   die Potenzgesetze

  •  
  •  
  •  , falls   und   vertauschen, d. h. wenn   gilt.

Ist   ein invertierbares Element, so kann man mittels

  für  

Potenzen mit beliebigen ganzzahligen Exponenten definieren. Die Rechenregeln gelten analog. Im Fall abelscher Gruppen besagen sie, dass durch die Potenzierung die Struktur eines  -Moduls induziert wird.

Allgemeinere ExponentenBearbeiten

Allgemeinere Exponenten wie Matrizen werden meist nur im Zusammenhang mit der Basis  , also als Werte der verallgemeinerten Exponentialfunktion betrachtet.

Darüber hinaus wird die Potenzschreibweise gelegentlich auch für andere natürliche Fortsetzungen verwendet. So werden beispielsweise in der algebraischen Zahlentheorie gelegentlich Potenzen von Elementen von (topologischen) Galoisgruppen mit Exponenten in Vervollständigungen von   betrachtet; es handelt sich dann um die jeweils eindeutig bestimmte stetige Fortsetzung der Abbildung

 

Für beliebige Kardinalzahlen   und   lässt sich die Potenz durch   definieren, wobei   die Menge aller Funktionen mit Urmenge   und Bildmenge   bezeichnet, diese Verallgemeinerung setzt das Potenzmengenaxiom voraus, wobei zur Handhabung der Kardinalzahlen in der Regel auch das Auswahlaxiom angenommen wird.

Mehrdeutigkeit der ExponentenschreibweiseBearbeiten

Die Exponentenschreibweise kann insbesondere bei Funktionen verschiedene Bedeutungen haben, je nachdem, ob die Schreibweise die Iteration der Verkettung oder der punktweisen Multiplikation wiedergeben soll. Darüber hinaus könnte auch ein oberer Index gemeint sein. In der Regel geht aus dem Kontext hervor, was gerade gemeint ist.

VerkettungBearbeiten

Die Potenzschreibweise wird oft als abkürzende Schreibweise für die Verkettung von Funktionen, deren Werte wieder im Definitionsbereich liegen, verwendet, zum Beispiel für Iterationen in dynamischen Systemen.

Man definiert, wobei id die Identität auf dem Definitionsbereich bezeichnet, rekursiv:

 

für  , also

 

und so weiter.

Für die Funktionswerte bedeutet dies

 

und allgemein

 

Als Erweiterung dieser Definition definiert man üblicherweise noch   als die Umkehrfunktion von  . Insbesondere findet sich diese Schreibweise auch auf vielen Taschenrechnern, beispielsweise wird dort und auch sonst die Arkusfunktion   mit   bezeichnet. Oft bezeichnet   auch die Urbildfunktion.

MultiplikationBearbeiten

Als abkürzende Schreibweise für die Multiplikation mehrerer Funktionswerte trigonometrischer Funktionen mit gleichen Argumenten, wie sie beispielsweise bei den Additionstheoremen für Winkelfunktionen häufig auftreten, hat sich ebenfalls die Potenzschreibweise eingebürgert, das heißt, man schreibt

 .

Dies ist nicht mit der oben vorgestellten Schreibweise für die Verkettung von Funktionen verträglich. Gleiches gilt für Polynome. Mit   meint man immer das  -fache Produkt der Unbestimmten   mit sich selbst. Da die Unbestimmte als Polynomfunktion die identische Abbildung ist, wäre die Potenzschreibweise als Iteration von Funktionen hier nicht sinnvoll.

Oberer IndexBearbeiten

Für indizierte Größen schreibt man den Index manchmal hochgestellt, sodass in den Formeln der Eindruck einer Potenzierung entstehen könnte. Das kommt besonders in der Tensorrechnung vor, etwa bei der Bezeichnung von Vektorfeldern in Koordinatenschreibweise, oder bei der Indizierung von Größen, die ihrerseits bereits indiziert sind, etwa Folgen von Folgen.

AbleitungBearbeiten

Wird der Exponent in Klammern geschrieben, so ist meist die entsprechende Ableitung gemeint,   bezeichnet dann die  -te Ableitung der Funktion  .

In ProgrammiersprachenBearbeiten

Die Schreibweise   mit hochgestelltem Exponenten ist praktisch und gut lesbar in handgeschriebenen Formeln und im Schriftsatz, aber unpraktisch bei Schreibmaschinen und Terminals, bei denen die Zeichen einer Zeile alle auf einer Höhe stehen. Deshalb benutzen viele Programmiersprachen alternative Wege, um eine Potenz darzustellen:

In vielen Programmiersprachen gibt es statt eines Potenzoperators eine entsprechende Bibliotheksfunktion, beispielsweise pow(x,y) in C, Math.pow(x,y) in Java oder JavaScript und Math.Pow(x,y) in C-Sharp.

Verwandte ThemenBearbeiten

WeblinksBearbeiten

Wikibooks: Mathe für Nicht-Freaks: Potenz – Lern- und Lehrmaterialien

EinzelnachweiseBearbeiten

  1. Potenz. Bibliographisches Institut – Dudenverlag, abgerufen am 3. Juni 2016.
  2. Lehnübersetzung aus gr. δύναμις, dýnamis, das in der antiken Geometrie spätestens seit Platon auch die Bedeutung „Quadrat“ hatte.
  3. Syntax the Algorithmic Language Algol 60. (Memento vom 28. August 2012 im Internet Archive)
  4. Antwort auf eine Frage auf Stackoverflow zu Potenzoperatoren in Haskell
  5. erarb. von Günther Reinelt. Unter Mitw. von Carsten Kreutz: Lambacher Schweizer - Mathematik für die Fachhochschulreife / [Hauptbd.]. Gesamtband. 1. Aufl., [Dr.] 1. Klett-Schulbuchverl, Stuttgart 2008, ISBN 978-3-12-732691-8.
  6. Augustin-Louis Cauchy: Analyse algébrique. Die Tabelle mit den unbestimmten Ausdrücken ist auf Seite 69.
  7. Guillaume Libri: Mémoire sur les fonctions discontinues. Journal für die reine und angewandte Mathematik, 10 (1833), S. 303–316.
  8. August Ferdinand Möbius: Beweis der Gleichung  , nach J. F. Pfaff. Journal für die reine und angewandte Mathematik, 12 (1834), S. 134–136.
  9. Donald E. Knuth: Two notes on notation. In: American Mathematical Monthly. Vol. 99, No. 5, Mai 1992, S. 403–422 (Preprint auf der Website von Knuth als TeX-Quelltext; GZIP; 26 kB), (auch auf arXiv als PDF). Die Geschichte der Kontroverse ist auf Seite 6 des Preprints.
  10. Man kann es − mit letztlich demselben Ergebnis − auch andersherum sehen: Die Schreibweise   ist eine „Kurzform“ von  , die keinen Exponenten 0 enthält. Dabei ist vereinbart, dass der Wert einer Potenz als 1 zu nehmen ist, wenn ihr Exponent durch eine Konstellation der Laufvariablen 0 wird.
  11. Thomas Jech: Set Theory, Springer-Verlag (2003), ISBN 3-540-44085-2, Seite 28, Gleichungen (3.3)
  12. Brian W. Kernighan, Lorinda L. Cherry: Typesetting Mathematics - User's Guide (Second Edition). 15. August 1978, S. 2 (englisch, kohala.com).