Hypergeometrische Verteilung

Diskrete Wahrscheinlichkeitsverteilung

Die hypergeometrische Verteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie ist univariat und zählt zu den diskreten Wahrscheinlichkeitsverteilungen. In Abgrenzung zur allgemeinen hypergeometrischen Verteilung wird sie auch klassische hypergeometrische Verteilung genannt.[1]

Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für .Rot: ;Blau: ; Grün: .

Einer dichotomen Grundgesamtheit werden in einer Stichprobe zufällig Elemente ohne Zurücklegen entnommen. Die hypergeometrische Verteilung gibt dann Auskunft darüber, mit welcher Wahrscheinlichkeit in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei Qualitätskontrollen zu.

Die hypergeometrische Verteilung wird modellhaft dem Urnenmodell ohne Zurücklegen zugeordnet (siehe auch Kombination ohne Wiederholung). Man betrachtet speziell in diesem Zusammenhang eine Urne mit zwei Sorten Kugeln. Es werden Kugeln ohne Zurücklegen entnommen. Die Zufallsvariable ist die Zahl der Kugeln der ersten Sorte in dieser Stichprobe.

Die hypergeometrische Verteilung beschreibt also die Wahrscheinlichkeit dafür, dass bei gegebenen Elementen („Grundgesamtheit des Umfangs “), von denen die gewünschte Eigenschaft besitzen, beim Herausgreifen von Probestücken („Stichprobe des Umfangs “) genau Treffer erzielt werden, d. h. die Wahrscheinlichkeit für Erfolge in Versuchen.

Beispiel 1: In einer Urne befinden sich 30 Kugeln, 20 davon sind blau, also sind 10 nicht blau. Wie hoch ist die Wahrscheinlichkeit p, bei einer Stichprobe von zwanzig Kugeln genau dreizehn blaue Kugeln zu ziehen (ohne Zurücklegen)? Antwort: p = 0.3096. Dies entspricht dem blauen Balken bei k = 13 im Diagramm "Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für n = 20".

Beispiel 2: In einer Urne befinden sich 45 Kugeln, 20 davon sind gelb. Wie hoch ist die Wahrscheinlichkeit p, bei einer Stichprobe von zehn Kugeln genau vier gelbe Kugeln zu ziehen? Antwort: p = 0.269. Das Beispiel wird unten durchgerechnet.

DefinitionBearbeiten

Die hypergeometrische Verteilung ist abhängig von drei Parametern:

  • der Anzahl   der Elemente einer Grundgesamtheit.
  • der Anzahl   der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge (die Anzahl möglicher Erfolge).
  • der Anzahl   der Elemente in einer Stichprobe.

Die Verteilung gibt nun Auskunft darüber, wie wahrscheinlich es ist, dass sich   Elemente mit der zu prüfenden Eigenschaft (Erfolge bzw. Treffer) in der Stichprobe befinden. Der Ergebnisraum   ist daher  .

Eine diskrete Zufallsgröße   unterliegt der hypergeometrischen Verteilung mit den Parametern  ,   und  , wenn sie die Wahrscheinlichkeiten

 

für   besitzt. Dabei bezeichnet   den Binomialkoeffizienten  über  “. Man schreibt dann   oder  .

Die Verteilungsfunktion   gibt dann die Wahrscheinlichkeit an, dass höchstens   Elemente mit der zu prüfenden Eigenschaft in der Stichprobe sind. Diese kumulierte Wahrscheinlichkeit ist die Summe

 .

Alternative ParametrisierungBearbeiten

Gelegentlich wird auch als Wahrscheinlichkeitsfunktion

 

verwendet. Diese geht mit   und   in die obige Variante über.

Eigenschaften der hypergeometrischen VerteilungBearbeiten

SymmetrienBearbeiten

Es gelten folgende Symmetrien:

  • Vertauschung von gezogenen Kugeln und Erfolgen:  
  • Vertauschung von Erfolgen und Misserfolgen:  

ErwartungswertBearbeiten

Der Erwartungswert der hypergeometrisch verteilten Zufallsvariable   ist

 .

ModusBearbeiten

Der Modus der hypergeometrischen Verteilung ist

 .

Dabei ist   die Gaußklammer.

VarianzBearbeiten

Die Varianz der hypergeometrisch verteilten Zufallsvariable   ist

 ,

wobei der letzte Bruch der so genannte Korrekturfaktor (Endlichkeitskorrektur) beim Modell ohne Zurücklegen ist.

SchiefeBearbeiten

Die Schiefe der hypergeometrischen Verteilung ist

 .

Charakteristische FunktionBearbeiten

Die charakteristische Funktion hat die folgende Form:

 

Wobei   die gaußsche hypergeometrische Funktion bezeichnet.

Momenterzeugende FunktionBearbeiten

Auch die momenterzeugende Funktion lässt sich mittels der hypergeometrischen Funktion ausdrücken:

 

Wahrscheinlichkeitserzeugende FunktionBearbeiten

Die wahrscheinlichkeitserzeugende Funktion ist gegeben als

 

Beziehung zu anderen VerteilungenBearbeiten

Beziehung zur BinomialverteilungBearbeiten

Im Gegensatz zur Binomialverteilung werden bei der hypergeometrischen Verteilung die Stichproben nicht wieder in das Reservoir zur erneuten Auswahl zurückgelegt. Ist der Umfang   der Stichprobe im Vergleich zum Umfang   der Grundgesamtheit relativ klein (etwa  ), unterscheiden sich die durch die Binomialverteilung bzw. die hypergeometrische Verteilung berechneten Wahrscheinlichkeiten nicht wesentlich voneinander. In diesen Fällen wird dann oft die Approximation durch die mathematisch einfacher zu handhabende Binomialverteilung vorgenommen.

Beziehung zur Pólya-VerteilungBearbeiten

Die hypergeometrische Verteilung ist ein Spezialfall der Pólya-Verteilung (wähle  ).

Beziehung zum UrnenmodellBearbeiten

Die hypergeometrische Verteilung entsteht aus der diskreten Gleichverteilung durch das Urnenmodell. Aus einer Urne mit insgesamt   Kugeln sind   eingefärbt und es werden   Kugeln gezogen. Die hypergeometrische Verteilung gibt für   die Wahrscheinlichkeit an, dass   gefärbte Kugeln gezogen werden. Andernfalls kann auch mit der Binomialverteilung in der Praxis modelliert werden. Siehe hierzu auch das Beispiel.

Beziehung zur multivariaten hypergeometrischen VerteilungBearbeiten

Die multivariate hypergeometrische Verteilung ist eine Verallgemeinerung der hypergeometrischen Verteilung. Sie beantwortet die Frage nach der Anzahl der gezogenen Kugeln einer Farbe aus einer Urne, wenn diese mehr als zwei unterscheidbare Farben von Kugeln enthält. Für zwei Farben stimmt sie mit der hypergeometrischen Verteilung überein.

BeispieleBearbeiten

Diverse BeispieleBearbeiten

In einem Behälter befinden sich 45 Kugeln, davon sind 20 gelb. Es werden 10 Kugeln ohne Zurücklegen entnommen.

Die hypergeometrische Verteilung gibt die Wahrscheinlichkeit dafür an, dass genau x = 0, 1, 2, 3, …, 10 der entnommenen Kugeln gelb sind.

Ein Beispiel für die praktische Anwendung der hypergeometrischen Verteilung ist das Lotto: Beim Zahlenlotto gibt es 49 nummerierte Kugeln; davon werden bei der Auslosung 6 gezogen; auf dem Lottoschein werden 6 Zahlen angekreuzt.

  gibt die Wahrscheinlichkeit dafür an, genau x = 0, 1, 2, 3, …, 6 „Treffer“ zu erzielen.

Ausführliches Rechenbeispiel für die KugelnBearbeiten

 

Zu dem oben aufgeführten Beispiel der farbigen Kugeln soll die Wahrscheinlichkeit ermittelt werden, dass genau 4 gelbe Kugeln resultieren.

Gesamtanzahl der Kugeln  
Anzahl mit der Eigenschaft „gelb“  
Umfang der Stichprobe  
Davon angestrebt gelb  

Also  .

Die Wahrscheinlichkeit ergibt sich aus:

Anzahl der Möglichkeiten, genau 4 gelbe (und damit genau 6 violette) Kugeln auszuwählen
geteilt durch
Anzahl der Möglichkeiten, genau 10 Kugeln beliebiger Farbe auszuwählen

Es gibt

 

Möglichkeiten, genau 4 gelbe Kugeln auszuwählen.

Es gibt

 

Möglichkeiten, genau 6 violette Kugeln auszuwählen.

Da jede „gelbe Möglichkeit“ mit jeder „violetten Möglichkeit“ kombiniert werden kann, ergeben sich

 

Möglichkeiten für genau 4 gelbe und 6 violette Kugeln.

Es gibt insgesamt

 

Möglichkeiten, 10 Kugeln zu ziehen.

Wir erhalten also die Wahrscheinlichkeit

 ,

das heißt, in rund 27 Prozent der Fälle werden genau 4 gelbe (und 6 violette) Kugeln entnommen.

Alternativ kann das Ergebnis auch mit folgender Gleichung gefunden werden

 

Es befinden sich in der Stichprobe vom Umfang   nämlich 4 gelbe Kugeln. Die restlichen gelben Kugeln (16) befinden sich in den 35 übriggebliebenen Kugeln, die nicht zur Stichprobe gehören.

Zahlenwerte zu den BeispielenBearbeiten

h(x|45;20;10)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.268.760 0,1024
1 40.859.500 1,2807
2 205.499.250 6,4416
3 547.998.000 17,1776
4 858.049.500 26,8965
5 823.727.520 25,8207
6 490.314.000 15,3694
7 178.296.000 5,5889
8 37.791.000 1,1846
9 4.199.000 0,1316
10 184.756 0,0058
3.190.187.286 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|45;10;20)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.247.943.160 0,1024
1 40.599.289.500 1,2808
2 204.190.544.250 6,4416
3 544.508.118.000 17,1776
4 852.585.079.500 26,8965
5 818.481.676.320 25,8207
6 487.191.474.000 15,3694
7 177.160.536.000 5,5889
8 37.550.331.000 1,1846
9 4.172.259.000 0,1316
10 183.579.396 0,0058
11 … 20 0 0
3.169.870.830.126 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|49;6;6)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 6.096.454 43,5965
1 5.775.588 41,3019
2 1.851.150 13,2378
3 246.820 1,765
4 13.545 0,0969
5 258 0,0018
6 1 0,0000072
13.983.816 100,0000
Erwartungswert 0,7347
Varianz 0,5776

WeblinksBearbeiten

Wikibooks: Hypergeometrische Verteilung – Lern- und Lehrmaterialien

EinzelnachweiseBearbeiten

  1. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 36, doi:10.1515/9783110215274.