Bernoulli-Verteilung

Zufallsgrößen mit einer Bernoulli-Verteilung (auch als Null-Eins-Verteilung, Alternativ-Verteilung[1] oder Boole-Verteilung[2] bezeichnet) benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen es nur zwei mögliche Versuchsausgänge gibt. Einer der Versuchsausgänge wird meistens mit Erfolg bezeichnet und der komplementäre Versuchsausgang mit Misserfolg. Die zugehörige Wahrscheinlichkeit für einen Erfolg nennt man Erfolgswahrscheinlichkeit und die Wahrscheinlichkeit eines Misserfolgs. Beispiele:

  • Werfen einer Münze: Kopf (Erfolg), , und Zahl (Misserfolg), .
  • Werfen eines Würfels, wobei nur eine „6“ als Erfolg gewertet wird: , .
  • Qualitätsprüfung (einwandfrei, nicht einwandfrei).
  • Anlagenprüfung (funktioniert, funktioniert nicht).
  • Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein , tritt nicht ein .
Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung für (blau), (grün) und (rot)

Die Bezeichnung Bernoulli-Versuch (Bernoullian trials nach Jakob I Bernoulli) wurde erstmals 1937 in dem Buch Introduction to Mathematical Probability von James Victor Uspensky verwendet.[3]

DefinitionBearbeiten

Eine diskrete Zufallsgröße   mit Werten in der Menge   unterliegt der Null-Eins-Verteilung bzw. Bernoulli-Verteilung mit dem Parameter  , wenn sie der folgenden Wahrscheinlichkeitsfunktion folgt

 .

Die Verteilungsfunktion ist dann

 .

Man schreibt dann   oder  .

Eine Reihe von unabhängigen identischen Versuchen, bei der jeder Einzelversuch der Bernoulli-Verteilung genügt, wird Bernoulli-Prozess oder bernoullisches Versuchsschema genannt.

EigenschaftenBearbeiten

ErwartungswertBearbeiten

Die Bernoulli-Verteilung mit Parameter   hat den Erwartungswert:

 

Dies hat den Grund, dass für eine Bernoulli-verteilte Zufallsvariable   mit   und   gilt:

 

Varianz und weitere StreumaßeBearbeiten

Die Bernoulli-Verteilung besitzt die Varianz

 

denn es ist   und damit

 .

Damit ist die Standardabweichung

 

und der Variationskoeffizient

 .

SymmetrieBearbeiten

Für den Parameter   ist die Bernoulli-Verteilung symmetrisch um den Punkt  .

SchiefeBearbeiten

Die Schiefe der Bernoulli-Verteilung ist

 .

Dies kann folgendermaßen gezeigt werden. Eine standardisierte Zufallsvariable   mit   Bernoulli-verteilt nimmt den Wert   mit Wahrscheinlichkeit   an und den Wert   mit Wahrscheinlichkeit  . Damit erhalten wir für die Schiefe

 

Wölbung und ExzessBearbeiten

Der Exzess der Bernoulli-Verteilung ist

 

und damit ist die Wölbung

 .

MomenteBearbeiten

Alle k-ten Momente   sind gleich und es gilt

 .

Es ist nämlich

 .

EntropieBearbeiten

Die Entropie der Bernoulli-Verteilung ist

 

gemessen in Bit.

ModusBearbeiten

Der Modus der Bernoulli-Verteilung ist

 .

MedianBearbeiten

Der Median der Bernoulli-Verteilung ist

 

falls   gilt, ist jedes   ein Median.

KumulantenBearbeiten

Die kumulantenerzeugende Funktion ist

 .

Damit sind die ersten Kumulanten   und es gilt die Rekursionsgleichung

 

Wahrscheinlichkeitserzeugende FunktionBearbeiten

Die wahrscheinlichkeitserzeugende Funktion ist

 .

Charakteristische FunktionBearbeiten

Die charakteristische Funktion ist

 .

Momenterzeugende FunktionBearbeiten

Die momenterzeugende Funktion ist

 .

Beziehung zu anderen VerteilungenBearbeiten

Beziehung zur BinomialverteilungBearbeiten

Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung für  . Mit anderen Worten, die Summe von unabhängigen Bernoulli-verteilten Zufallsgrößen mit identischem Parameter   genügt der Binomialverteilung, demnach ist die Bernoulli-Verteilung nicht reproduktiv. Die Binomialverteilung ist die  -fache Faltung der Bernoulli-Verteilung bei gleichem Parameter   bzw. mit gleicher Wahrscheinlichkeit  .

Beziehung zur verallgemeinerten BinomialverteilungBearbeiten

Die Summe von   voneinander unabhängigen Bernoulli-verteilten Zufallsvariablen, die alle einen unterschiedlichen Parameter   besitzen, ist verallgemeinert binomialverteilt.

Beziehung zur Poisson-VerteilungBearbeiten

Die Summe von Bernoulli-verteilten Zufallsgrößen genügt für  ,   und   einer Poisson-Verteilung mit dem Parameter  . Dies folgt direkt daraus, dass die Summe binomialverteilt ist und für die Binomialverteilung die Poisson-Approximation gilt.

Beziehung zur ZweipunktverteilungBearbeiten

Die Bernoulli-Verteilung ist ein Spezialfall der Zweipunktverteilung mit  . Umgekehrt ist die Zweipunktverteilung eine Verallgemeinerung der Bernoulli-Verteilung auf beliebige zweielementige Punktmengen.

Beziehung zur Rademacher-VerteilungBearbeiten

Sowohl die Bernoulli-Verteilung mit   als auch die Rademacher-Verteilung modellieren einen fairen Münzwurf (oder eine faire, zufällige Ja/Nein-Entscheidung). Der Unterschied besteht lediglich darin, dass Kopf (Erfolg) und Zahl (Misserfolg) unterschiedlich codiert werden.

Beziehung zur geometrischen VerteilungBearbeiten

Bei Hintereinanderausführung von Bernoulli-verteilten Experimenten ist die Wartezeit auf den ersten Erfolg (oder letzten Misserfolg, je nach Definition) geometrisch verteilt.

Beziehung zur diskreten GleichverteilungBearbeiten

Die Bernoulli-Verteilung mit   ist eine diskrete Gleichverteilung auf  .

UrnenmodellBearbeiten

Die Bernoulli-Verteilung lässt sich auch aus dem Urnenmodell erzeugen, wenn   ist. Dann entspricht dies dem einmaligen Ziehen aus einer Urne mit   Kugeln, von denen genau   rot sind und alle anderen eine andere Farbe besitzen. Die Wahrscheinlichkeit, eine rote Kugel zu ziehen, ist dann Bernoulli-verteilt.

SimulationBearbeiten

Bei der Simulation macht man sich zunutze, dass wenn   eine stetig gleichverteilte Zufallsvariable auf   ist, die Zufallsvariable   Bernoulli-verteilt ist mit Parameter  . Da fast jeder Computer Standardzufallszahlen erzeugen kann, ist die Simulation wie folgend:

  1. Erzeuge eine Standardzufallszahl  
  2. Ist  , gib 0 aus, ansonsten gib 1 aus.

Dies entspricht genau der Inversionsmethode. Die einfache Simulierbarkeit von Bernoulli-verteilten Zufallsvariablen kann auch zur Simulation von binomialverteilten oder verallgemeinert Binomialverteilten Zufallsvariablen genutzt werden.

LiteraturBearbeiten

  • Hans-Otto Georgii: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage, de Gruyter, 2009, ISBN 978-3-11-021526-7.

EinzelnachweiseBearbeiten

  1. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 63, doi:10.1007/978-3-642-45387-8.
  2. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 254, doi:10.1007/978-3-642-21026-6.
  3. James Victor Uspensky: Introduction to Mathematical Probability, McGraw-Hill, New York 1937, Seite 45