Hauptmenü öffnen

Körper (Algebra)

algebraische Struktur
Körper im Zusammenhang mit ausgewählten mathematischen Teilgebieten (Klassendiagramm)

Ein Körper (englisch: field) ist im mathematischen Teilgebiet der Algebra eine ausgezeichnete algebraische Struktur, in der die Addition, Subtraktion, Multiplikation und Division auf eine bestimmte Weise durchgeführt werden können.

Die Bezeichnung „Körper“ wurde im 19. Jahrhundert von Richard Dedekind eingeführt.

Die wichtigsten Körper, die in fast allen Gebieten der Mathematik benutzt werden, sind der Körper der rationalen Zahlen, der Körper der reellen Zahlen und der Körper der komplexen Zahlen.

Formale DefinitionBearbeiten

Allgemeine DefinitionBearbeiten

Ein Körper ist eine Menge  , versehen mit zwei inneren zweistelligen Verknüpfungen “ und „ “ (die Addition und Multiplikation genannt werden), für die folgende Bedingungen erfüllt sind:

  1.   ist eine abelsche Gruppe (neutrales Element 0).
  2.   ist eine abelsche Gruppe (neutrales Element 1).
  3. Distributivgesetze:
      für alle  .
      für alle  .

Einzelaufzählung der benötigten AxiomeBearbeiten

Ein Körper muss also folgende Einzelaxiome erfüllen:

  1. Additive Eigenschaften:
    1.   (Assoziativgesetz)
    2.   (Kommutativgesetz)
    3. Es gibt ein Element   mit   (neutrales Element).
    4. Zu jedem   existiert das additive Inverse   mit  .
  2. Multiplikative Eigenschaften:
    1.   (Assoziativgesetz)
    2.   (Kommutativgesetz)
    3. Es gibt ein Element   mit   (neutrales Element).
    4. Zu jedem   existiert das multiplikative Inverse   mit  .
  3. Zusammenspiel von additiver und multiplikativer Struktur:
    1.   (Links-Distributivgesetz)
    2.   (Rechts-Distributivgesetz)

Definition als spezieller RingBearbeiten

Ein kommutativer unitärer Ring, der nicht der Nullring ist, ist ein Körper, wenn in ihm jedes von Null verschiedene Element ein Inverses bezüglich der Multiplikation besitzt.

Anders formuliert, ist ein Körper ein kommutativer unitärer Ring  , in dem die Einheitengruppe   gleich   ist.

BemerkungenBearbeiten

Die Definition sorgt dafür, dass in einem Körper in der „gewohnten“ Weise Addition, Subtraktion und Multiplikation funktionieren (und die Division mit Ausnahme der nicht lösbaren Division durch 0):

  • Das Inverse von   bezüglich der Addition ist   und wird meist das additiv Inverse zu   oder auch das Negative von   genannt.
  • Das Inverse von   bezüglich der Multiplikation ist   und wird das (multiplikativ) Inverse zu oder der Kehrwert von   genannt.
  •   ist das einzige Element des Körpers, das keinen Kehrwert hat, die multiplikative Gruppe eines Körpers ist also  .[1]

Anmerkung: Die Bildung des Negativen eines Elementes hat nichts mit der Frage zu tun, ob das Element selbst negativ ist; beispielsweise ist das Negative der reellen Zahl   die positive Zahl  . In einem allgemeinen Körper gibt es keinen Begriff von negativen oder positiven Elementen. (Siehe auch geordneter Körper.)

Verallgemeinerungen: Schiefkörper und KoordinatenkörperBearbeiten

Verzichtet man auf die Bedingung, dass die Multiplikation kommutativ ist, so gelangt man zur Struktur des Schiefkörpers. Es gibt jedoch auch Autoren, die für einen Schiefkörper explizit voraussetzen, dass die Multiplikation nicht kommutativ ist. In diesem Fall ist ein Körper nicht mehr zugleich Schiefkörper. Ein Beispiel ist der Schiefkörper der Quaternionen, der kein Körper ist. Andererseits gibt es Autoren, so Bourbaki, die Schiefkörper als Körper und die hier besprochenen Körper als kommutative Körper bezeichnen.

In der analytischen Geometrie werden Körper zur Koordinatendarstellung von Punkten in affinen und projektiven Räumen verwendet, siehe Affine Koordinaten, Projektives Koordinatensystem. In der synthetischen Geometrie, in der auch Räume (insbesondere Ebenen) mit schwächeren Eigenschaften untersucht werden, benutzt man als Koordinatenbereiche („Koordinatenkörper“) auch Verallgemeinerungen der Schiefkörper, nämlich Alternativkörper, Quasikörper und Ternärkörper.

Eigenschaften und BegriffeBearbeiten

  • Es gibt genau eine „0“ (Null-Element, neutrales Element bzgl. der Körper-Addition) und eine „1“ (Eins-Element, neutrales Element bzgl. der Körper-Multiplikation) in einem Körper.
  • Jeder Körper ist ein Ring. Die Eigenschaften der multiplikativen Gruppe heben den Körper aus den Ringen heraus. Wenn die Kommutativität der multiplikativen Gruppe nicht gefordert wird, erhält man den Begriff des Schiefkörpers.
  • Jeder Körper ist nullteilerfrei: Ein Produkt zweier Elemente des Körpers ist genau dann 0, wenn mindestens einer der Faktoren 0 ist.
  • Jedem Körper lässt sich eine Charakteristik zuordnen, die entweder 0 oder eine Primzahl ist.
  • Die kleinste Teilmenge eines Körpers, die selbst noch alle Körperaxiome erfüllt, ist sein Primkörper. Der Primkörper ist entweder isomorph zum Körper   der rationalen Zahlen (bei Körpern der Charakteristik 0) oder ein endlicher Restklassenkörper   (bei Körpern der Charakteristik  , speziell bei allen endlichen Körpern, s. u.).
  • Ein Körper ist ein eindimensionaler Vektorraum über sich selbst als zugrundeliegendem Skalarkörper. Darüber hinaus existieren über allen Körpern Vektorräume beliebiger Dimension. (→ Hauptartikel Vektorraum).
  • Ein wichtiges Mittel, um einen Körper   algebraisch zu untersuchen, ist der Polynomring   der Polynome in einer Variablen mit Koeffizienten aus  .
    • Man nennt einen Körper   algebraisch abgeschlossen, wenn sich jedes nichtkonstante Polynom aus   in Linearfaktoren aus   zerlegen lässt.
    • Man nennt einen Körper   vollkommen, wenn kein irreduzibles nichtkonstantes Polynom aus   in irgendeiner Körpererweiterung mehrfache Nullstellen hat. Algebraische Abgeschlossenheit impliziert Vollkommenheit, aber nicht umgekehrt.
  • Wenn in einem Körper eine Totalordnung definiert ist, die mit der Addition und der Multiplikation verträglich ist, spricht man von einem geordneten Körper und nennt die Totalordnung auch Anordnung des Körpers. In solchen Körpern kann man von negativen und positiven Zahlen sprechen.
    • Wenn in dieser Anordnung jedes Körperelement   durch eine endliche Summe des Einselementes übertroffen werden kann ( ), sagt man, der Körper erfüllt das Archimedische Axiom oder auch, er ist archimedisch geordnet.
  • In der Bewertungstheorie werden bestimmte Körper mit Hilfe einer Bewertungsfunktion untersucht. Man nennt sie dann bewertete Körper.
  • Ein Körper   besitzt als Ring nur die trivialen Ideale   und  .
  • Jeder nicht-konstante Homomorphismus von einem Körper in einen Ring ist injektiv.

KörpererweiterungBearbeiten

Eine Teilmenge   eines Körpers  , die selbst mit dessen Operationen wieder einen Körper bildet, wird Unter- oder Teilkörper genannt. Das Paar   und   heißt Körpererweiterung  ,   oder  . Beispielsweise ist der Körper der rationalen Zahlen   ein Teilkörper der reellen Zahlen  .

Eine Teilmenge   eines Körpers   ist ein Teilkörper, wenn sie folgende Eigenschaften hat:

  •  ,  
  •   (Abgeschlossenheit bezüglich Addition und Multiplikation)
  •   (Zu jedem Element aus   ist auch das additive Inverse in  .)
  •   (Zu jedem Element aus   mit Ausnahme der Null ist auch das multiplikativ Inverse in  .)

Das algebraische Teilgebiet, das sich mit der Untersuchung von Körpererweiterungen beschäftigt, ist die Galoistheorie.

BeispieleBearbeiten

  • Bekannte Beispiele für Körper sind
    • der Körper der rationalen Zahlen  , d. h. die Menge der rationalen Zahlen mit der üblichen Addition und Multiplikation
    • der Körper der reellen Zahlen  , d. h. die Menge der reellen Zahlen mit der üblichen Addition und Multiplikation, und
    • der Körper der komplexen Zahlen   d. h. die Menge der komplexen Zahlen mit der üblichen Addition und Multiplikation.
  • Körper können durch Adjunktion erweitert werden. Ein wichtiger Spezialfall – insbesondere in der Galoistheorie – sind algebraische Körpererweiterungen des Körpers  . Der Erweiterungskörper kann dabei als Vektorraum über   aufgefasst werden.
    •   ist ein Körper. Es genügt zu zeigen, dass das Inverse von   auch von der angegebenen Form ist:
             
      Eine mögliche Basis von   ist { }.
    •   ist ein Körper mit Basis { }.
  • Weitere Beispiele liefern die Restklassenkörper   mit   Primzahl[2] und
  • Zu jeder Primzahl   der Körper   der p-adischen Zahlen.
  • Die Menge der ganzen Zahlen   mit den üblichen Verknüpfungen ist kein Körper: Zwar ist   eine Gruppe mit neutralem Element   und jedes   besitzt das additive Inverse  , aber   ist keine Gruppe. Immerhin ist   das neutrale Element, aber außer zu   und   gibt es keine multiplikativen Inversen (zum Beispiel ist   keine ganze, sondern eine echt rationale Zahl):
  • Das Konzept, mit dem sich der Integritätsring der ganzen Zahlen zum Körper der rationalen Zahlen erweitern und in diesen einbetten lässt, kann auf beliebige Integritätsringe verallgemeinert werden:
    • So entsteht in der Funktionentheorie aus dem Integritätsring der auf einem Gebiet der komplexen Zahlenebene holomorphen Funktionen der Körper, der auf demselben Gebiet meromorphen Funktionen und abstrakter
    • aus dem Integritätsring der formalen Potenzreihen   über einem Körper   dessen Quotientenkörper, analog aus dem Integritätsring der formalen Dirichletreihen
    • aus dem Ring der Polynome in   Variablen,  , dessen Quotientenkörper, der Körper der rationalen Funktionen   in ebenso vielen Variablen.

Endliche KörperBearbeiten

+ O I A B
O O I A B
I I O B A
A A B O I
B B A I O
· O I A B
O O O O O
I O I A B
A O A B I
B O B I A

Ein Körper ist ein endlicher Körper, wenn seine Grundmenge   endlich ist. Die endlichen Körper sind in folgendem Sinne vollständig klassifiziert: Jeder endliche Körper hat genau   Elemente mit einer Primzahl   und einer positiven natürlichen Zahl  . Bis auf Isomorphie gibt es zu jedem solchen   genau einen endlichen Körper, der mit   bezeichnet wird. Jeder Körper   hat die Charakteristik  . Als Beispiel werden hier die Additions- und Multiplikationstafeln des   gezeigt; farbig hervorgehoben dessen Unterkörper  .

Im Spezialfall   erhalten wir zu jeder Primzahl   den Körper  , der isomorph zum Restklassenkörper   ist.

GeschichteBearbeiten

Wesentliche Ergebnisse der Körpertheorie sind Évariste Galois und Ernst Steinitz zu verdanken.

Siehe auchBearbeiten

LiteraturBearbeiten

WeblinksBearbeiten

 Wikibooks: Mathe für Nicht-Freaks: Körperaxiome – Lern- und Lehrmaterialien
 Wiktionary: Körper – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten

  1. Jegliche Lösung   jeder Gleichung   verletzt die Ringaxiome.
  2. Albrecht Beutelspacher: Lineare Algebra. 7. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2010, ISBN 978-3-528-66508-1, S. 35–37.