Hauptmenü öffnen

disjunkt

Mengen ohne ein gemeinsames Element
Zwei disjunkte Mengen

In der Mengenlehre heißen zwei Mengen und disjunkt (lateinisch disjunctus (-a, -um) ‚getrennt‘), elementfremd oder durchschnittsfremd, wenn sie kein gemeinsames Element besitzen. Mehrere Mengen heißen paarweise disjunkt, wenn beliebige zwei von ihnen disjunkt sind.

DefinitionenBearbeiten

 
Ein disjunktes Mengensystem

Zwei Mengen   und   sind disjunkt, wenn ihre Schnittmenge leer ist, wenn also gilt:

 

Eine Familie von Mengen   ist eine disjunkte Mengenfamilie, wenn ihre Elemente paarweise disjunkt sind, wenn also gilt:

  für   und  

Die Vereinigung   einer disjunkten Mengenfamilie nennt man disjunkte Vereinigung und schreibt sie als

 

Sind außerdem alle Mengen der Familie nichtleer, liegt eine Partition von   vor.

Die Begriffe werden auch analog für Mengensysteme (anstelle von Mengenfamilien) verwendet.

BeispieleBearbeiten

  • Die Mengen   und   sind disjunkt, weil sie kein gemeinsames Element haben.
  • Die Mengen   und   sind nicht disjunkt, da sie das Element   gemeinsam haben.
  • Die drei Mengen  ,   und   sind nicht paarweise disjunkt, da zumindest eine der drei möglichen Schnittmengen (nämlich  ) nicht leer ist.
  • Die folgende Aufzählung definierte eine (unendliche) disjunkte Mengenfamilie, die eine Partition der ganzen Zahlen darstellt:  .
  • Zwei verschiedene Geraden   und   in der euklidischen Ebene sind genau dann disjunkt, wenn sie parallel sind. Die Gesamtheit aller Parallelen zu einer gegebenen Geraden   bildet eine Partition der Ebene.

Weitere Beispiele:

AnwendungBearbeiten

Bei der Fragebogenkonstruktion müssen Fragen so formuliert werden, dass die Antwortmöglichkeiten (Begriffsbeziehungen) disjunkt und erschöpfend sind.

Beispiel für nicht-disjunkte Antwortmöglichkeiten: Wie viel verdienen Sie?

  1. 0 bis 1000 Euro
  2. 500 und mehr Euro.

Personen mit einem Verdienst zwischen 500 und 1000 Euro wissen nicht, welche Antwortmöglichkeit sie wählen sollen.

EigenschaftenBearbeiten

  • Die leere Menge   ist disjunkt zu jeder beliebigen Menge.
  •   und   sind genau dann disjunkt, wenn  .
  • Die Mächtigkeit einer endlichen disjunkten Vereinigung endlicher Mengen ist gleich der Summe der Einzelmächtigkeiten. Für nicht-disjunkte Vereinigungen gilt die Siebformel.
  • Einelementige Mengensysteme sind immer paarweise disjunkt.
  • Das leere Mengensystem ist paarweise disjunkt[1]

Siehe auchBearbeiten

WeblinksBearbeiten

 Wiktionary: disjunkt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten