Winkelhalbierende

Begriff aus der Geometrie

In der ebenen Geometrie ist die Winkelhalbierende eines Winkels die Halbgerade, die durch den Scheitelpunkt des Winkels läuft und das Winkelfeld in zwei deckungsgleiche Teile teilt.

Winkelhalbierende eines Winkels bzw. zweier Geraden

Ein schneidendes Geradenpaar bestimmt zwei Winkelhalbierende, in diesem Falle Geraden, die zueinander orthogonal sind. Jede dieser Winkelhalbierenden ist eine Symmetrieachse der geometrischen Figur, die von dem schneidenden Geradenpaar gebildet wird. Aus dieser Symmetrieeigenschaft folgt eine Charakterisierung der beiden Winkelhalbierenden als geometrischer Ort, die als Winkelhalbierendensatz bezeichnet wird.

In der analytischen Geometrie und in der Analysis spielen die Winkelhalbierenden der Koordinatenachsen eines kartesischen Koordinatensystems eine besondere Rolle. Diejenige, die durch den I. und III. Quadranten verläuft, heißt 1. Winkelhalbierende oder 1. Mediane, die andere 2. Winkelhalbierende.

In der synthetischen Geometrie werden die Winkelhalbierenden eines schneidenden Geradenpaars ebenfalls durch ihre Eigenschaft als Symmetrieachsen definiert. Die Existenz dieser Winkelhalbierenden ist dort eines der Axiome, die eine frei bewegliche präeuklidische Ebene kennzeichnen.

Winkelhalbierende in der ebenen GeometrieBearbeiten

KonstruktionBearbeiten

Ein Winkel ist durch seine beiden Schenkel, also die Halbgeraden mit gemeinsamen Anfang im Scheitel des Winkels, gegeben. Dann kann die Winkelhalbierende mit einem Zirkel und einem Lineal (Geodreieck) konstruiert werden: Um den Scheitelpunkt wird ein Kreis mit beliebigem Radius gezeichnet. An den Schnittpunkten mit den Schenkeln des Winkels wird der Zirkel erneut angesetzt. Dann zeichnet man jeweils einen Kreis mit gleichem Radius. Die Schnittpunkte dieser zwei Kreise liegen auf der Winkelhalbierenden.

Bei dieser Konstruktion wird benutzt, dass die Winkelhalbierende zugleich Mittelsenkrechte in dem gleichschenkligen Dreieck ist, das durch den Scheitel und die zwei ersten Hilfspunkte gegeben ist.

 
Die Winkelhalbierenden (rot) zweier Geraden sind zueinander orthogonal.
 
Konstruktion einer Winkelhalbierenden mit Zirkel und Lineal. Dazu müssen drei Kreise oder Kreisbögen gezeichnet werden.

Liegen allgemeiner zwei Geraden vor, die sich in einem Punkt schneiden, so haben wir vier Winkel und damit vier Winkelhalbierende. Die Winkelhalbierenden zweier Scheitelwinkel fallen zusammen, also bleiben nur zwei Winkelhalbierende übrig. Diese zwei Winkelhalbierenden – die zueinander orthogonal sind – nennt man die Winkelhalbierenden der zwei Geraden (siehe Abbildung rechts).

Wenn wir wieder zu dem Fall eines Winkels zurückkommen, der von zwei Schenkeln (Halbgeraden) begrenzt wird, und nun diese Schenkel zu Geraden verlängern, dann bekommen wir zwei Geraden mit zwei Winkelhalbierenden. Die eine ist die Winkelhalbierende des ursprünglichen Winkels. Die andere ist die Winkelhalbierende seines Nebenwinkels. Sie heißt Außenwinkelhalbierende des ursprünglichen Winkels.

WinkelhalbierendensatzBearbeiten

Die Vereinigungsmenge der beiden Winkelhalbierenden eines schneidenden Geradenpaars ist die Menge aller Punkte, die von den beiden Geraden den gleichen Abstand haben, oder, anders formuliert, die Menge der Mittelpunkte aller Kreise, die die beiden Geraden berühren.

Winkelhalbierende im DreieckBearbeiten

 
Die 3 Außenwinkelhablierenden:
Die 3 Schnittpunkte D, E, F liegen auf einer Geraden (rot) und es gelten die folgenden Streckenverhältnisse:
 

Ist in der Dreieckslehre von Winkelhalbierenden die Rede, so bezieht sich dieser Begriff meist auf die Innenwinkel, seltener auf die Außenwinkel. Hier wird die Winkelhalbierende eines Innenwinkels   oft als   abgekürzt. Dieses Kürzel steht dann zugleich auch für die Strecke auf der Winkelhalbierenden, die innerhalb des Dreiecks liegt, und in Konstruktionsaufgaben auch für deren Länge.

Für diese Winkelhalbierenden gelten unter anderem folgende Sätze:

Winkelhalbierende im ViereckBearbeiten

Die Winkelhalbierenden eines Vierecks begrenzen im Allgemeinen ein Sehnenviereck. Beim Tangentenviereck ist es zu einem Punkt entartet. Beim Sehnenviereck ist das eingeschlossene Viereck orthodiagonal. Die Winkelhalbierenden eines Parallelogramms schließen im Allgemeinen ein Rechteck ein, die Winkelhalbierenden eines Rechtecks ein Quadrat, die Winkelhalbierende eines gleichschenkligen Trapezes ein Drachenviereck, die Winkelhalbierende eines Vierecks mit gleichen gegenüberliegenden Winkeln ein gleichschenkliges Trapez.

GleichungenBearbeiten

Sind die Gleichungen   zweier Geraden gegeben, so ergeben sich die Gleichungen ihrer Winkelhalbierenden mit Hilfe ihrer Hesseschen Normalformen:

 

Denn die Winkelhalbierenden bilden die Gesamtheit der Punkte, die von den beiden Geraden den gleichen Abstand besitzen.

Winkelhalbierende eines KoordinatensystemsBearbeiten

In einem kartesischen Koordinatensystem spielen die beiden Winkelhalbierenden der Koordinatenachsen eine besondere Rolle:

Als 1. Winkelhalbierende (Winkelhalbierende des I. und III. Quadranten) bezeichnet man die Gerade mit der Gleichung  . Dieser Funktionsgraph ist die Ursprungsgerade mit der Steigung 1. Sie heißt in Österreich 1. Mediane.

Als 2. Winkelhalbierende (Winkelhalbierende des II. und IV. Quadranten) bezeichnet man die Gerade mit der Gleichung  . Dieser Funktionsgraph ist die Ursprungsgerade mit der Steigung −1.

VerallgemeinerungenBearbeiten

Mithilfe von iterativer Winkelhalbierung kann ein Winkel auch in  ,  ,   oder allgemein in   deckungsgleiche Teile geteilt werden. Dazu werden die halbierten Winkel jeweils erneut halbiert. Um einen Winkel zum Beispiel in   gleiche Teile zu teilen, müssen nacheinander 4 Winkelhalbierende konstruiert werden.

Dieses Verfahren lässt sich verallgemeinern: Ist ein Winkel   gegeben, dann kann der Winkel   konstruiert werden, wenn   und   natürliche Zahlen sind. Dabei hilft die Zahldarstellung im Binärsystem, denn der Quotient   hat eine endliche Darstellung mit höchstens   binären Nachkommastellen. Soll zum Beispiel der Winkel   konstruiert werden, dann hilft die binäre Darstellung  . Daraus ergibt sich  . Der Winkel   kann also konstruiert werden, indem am Scheitelpunkt nacheinander der Winkel   im Uhrzeigersinn, der Winkel   im Uhrzeigersinn und der Winkel   gegen den Uhrzeigersinn konstruiert wird.

Es gilt folgender Satz: Ist ein Winkel   gegeben und sind   und   natürliche Zahlen, dann kann der Winkel   genau dann mit Zirkel und Lineal konstruiert werden, wenn   eine Zweierpotenz ist, also  . Für alle anderen natürlichen Zahlen   ist das nicht möglich.[1]

Das geometrische Problem der Dreiteilung des Winkels, das seit dem 5. Jahrhundert v. Chr. bekannt ist, kann daher nicht mit Zirkel und Lineal gelöst werden.

Synthetische GeometrieBearbeiten

Eine präeuklidische Ebene ist in der synthetischen Geometrie eine affine Ebene   über einem Körper  , dessen Charakteristik nicht 2 ist, zusammen mit einer Orthogonalitätsrelation ohne isotrope Geraden   zwischen den Geraden der Ebene. In einer solchen Ebene können (senkrechte) Achsenspiegelungen definiert werden (siehe Spiegelung (Geometrie) – Achsenspiegelung).

Als Winkelhalbierenden-Axiom wird die folgende Aussage bezeichnet:

  • Zu zwei Geraden   existiert eine Gerade  , so dass bei der Achsenspiegelung an   die Gerade   auf die Gerade   abgebildet wird.

Sind die Geraden   parallel und verschieden, so ist deren Mittelparallele eine Gerade, die die geforderte Symmetrieeigenschaft hat. Da Mittelparallelen in einer präeuklidischen Ebene immer existieren, ist die wesentliche Forderung die nach einer Symmetrieachse für ein schneidendes Geradenpaar, also nach einer Winkelhalbierenden. Aus der Existenz einer Winkelhalbierenden folgt stets die Existenz genau einer zweiten, die senkrecht zur ersten ist.

Eine präeuklidische Ebene, die das Axiom für Winkelhalbierende erfüllt, wird als frei bewegliche Ebene bezeichnet.

LiteraturBearbeiten

  • Friedrich Bachmann: Aufbau der Geometrie aus dem Spiegelungsbegriff. 2. Auflage, Berlin; Göttingen; Heidelberg 1973
Zusammenfassung: Zur Begründung der Geometrie aus dem Spiegelungsbegriff. Mathematische Annalen, Bd. 123, 1951, S. 341ff
  • Wendelin Degen und Lothar Profke: Grundlagen der affinen und euklidischen Geometrie, Teubner, Stuttgart, 1976, ISBN 3-519-02751-8

WeblinksBearbeiten

Commons: Winkelhalbierende – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Winkelhalbierende – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wiktionary: Winkelsymmetrale – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten

  1. Stephen Buckley, Desmond MacHale, Department of Mathematics, University College, Cork: Dividing an angle into equal parts