Rechteck

zweidimensionales geometrisches Objekt mit vier rechten Winkeln und gleichlangen gegenüberliegenden Seiten

In der Geometrie ist ein Rechteck (ein Orthogon) ein ebenes Viereck, dessen Innenwinkel alle rechte Winkel sind. Es ist ein Spezialfall des Parallelogramms und damit auch des Trapezes. Ein Sonderfall des Rechtecks ist das Quadrat, bei dem alle Seiten gleich lang sind.

Rechteck mit Länge a, Breite b und Diagonale d

In der Topologie ist ein Rechteck eine Mannigfaltigkeit mit Rand, genauer eine Mannigfaltigkeit mit Ecken.

EigenschaftenBearbeiten

Für das Rechteck gilt:

Das Rechteck kann charakterisiert werden als

FormelnBearbeiten

 
Der Flächeninhalt eines Rechtecks ist gleich dem Produkt der Seitenlängen.
Mathematische Formeln zum Rechteck
Flächeninhalt  
Umfang  
Länge der Diagonalen  
Umkreisradius  
Innenwinkel  

Die Formel für die Länge der Diagonalen beruht auf dem Satz des Pythagoras. Der Umkreisradius ergibt sich durch Halbierung der Länge der Diagonalen.

Um ein Rechteck zu konstruieren, müssen zwei Größen gegeben sein. Häufig sind entweder eine der beiden Seitenlängen und die Länge der Diagonalen oder beide Seitenlängen gegeben.

Goldenes RechteckBearbeiten

 
Beide Rechtecke – je mit den Seitenverhältnissen a : b sowie (a + b) : a – sind jeweils Goldene Rechtecke (animierte Darstellung).

Rechtecke mit der Eigenschaft   für die Seitenlängen a und b nennt man Goldene Rechtecke. Als Seitenverhältnis ergibt sich der Goldenen Schnitt, also  .

Perfektes RechteckBearbeiten

 
Perfektes Rechteck mit den Seitenlängen 32 und 33

Ein Rechteck heißt perfekt, falls man es mit Quadraten lückenlos und überschneidungsfrei überdecken kann, wobei alle Quadrate unterschiedlich groß sind. Es ist nicht einfach, eine solche Parkettierung zu finden. Eine solche Zerlegung eines Rechtecks mit den Seitenlängen 32 und 33 in 9 Quadrate wurde 1925 von Zbigniew Moroń gefunden. Sie besteht aus den Quadraten mit den Seitenlängen 1, 4, 7, 8, 9, 10, 14, 15 und 18.[1][2]

Siehe auchBearbeiten

WeblinksBearbeiten

Wiktionary: Rechteck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Rechteck – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. Darstellung der Rechtecke nach Moroń (abgerufen 5. Dezember 2017)
  2. Eric W. Weisstein: Perfect Square Dissection. In: MathWorld (englisch).