Parallelogramm

konvexes ebenes Viereck mit parallelen gegenüberliegenden Seiten
01-Parallelogramm.svg

Ein Parallelogramm (von altgriechisch παραλληλό-γραμμος paralleló-grammos „von zwei Parallelenpaaren begrenzt“) oder Rhomboid (rautenähnlich) ist ein konvexes ebenes Viereck, bei dem gegenüberliegende Seiten parallel sind.

Parallelogramme sind spezielle Trapeze und zweidimensionale Parallelepipede. Rechteck, Raute (Rhombus) und Quadrat sind Spezialfälle des Parallelogramms.

EigenschaftenBearbeiten

Ein Viereck ist ein Parallelogramm genau dann, wenn eine der folgenden Bedingungen erfüllt ist:

  • Gegenüberliegende Seiten sind gleich lang und keine zwei gegenüberliegende Seiten schneiden sich (kein überschlagenes Viereck, sogenanntes Antiparallelogramm).
  • Zwei Seiten sind parallel und gleich lang.
  • Gegenüber liegende Winkel sind gleich groß.
  • Je zwei benachbarte Winkel ergeben zusammen 180°.
  • Die Diagonalen halbieren einander.
  • Die Summe der Flächen der Quadrate über den vier Seiten ist gleich der Summe der Flächen der Quadrate über den zwei Diagonalen (Parallelogrammgleichung).
  • Es ist punktsymmetrisch (zweizählig drehsymmetrisch).

Für jedes Parallelogramm gilt:

Alle Parallelogramme, die mindestens eine Symmetrieachse besitzen, sind Rechtecke oder Rauten.

FormelnBearbeiten

Mathematische Formeln zum Parallelogramm
Flächeninhalt  

 
Über Transformation in ein Rechteck mit der Determinante:
 

 
Umfang  
Innenwinkel  
Höhe  
 
Länge der Diagonalen

(siehe Kosinussatz)

 
 
Innenwinkel  
Parallelogrammgleichung  

Beweis der Flächenformel für ein ParallelogrammBearbeiten

 
Vom großen Rechteck werden sechs Teilflächen abgezogen
 
Animation zur Berechnung des Flächeninhalts eines Parallelogramms. Der Flächeninhalt ist gleich dem Produkt der Länge einer Grundseite   mit der zugehörigen Höhe  .

Den Flächeninhalt   des nebenstehenden schwarzen Parallelogramms kann man erhalten, indem man von der Fläche des großen Rechtecks die sechs kleinen Flächen mit bunten Kanten abzieht. Wegen der Symmetrie und der Vertauschbarkeit der Multiplikation kann man auch vom großen Rechteck das Doppelte der drei kleinen Flächen unterhalb des Parallelogramms abziehen. Es ist also:

 

Konstruktion eines ParallelogrammsBearbeiten

Ein Parallelogramm, bei dem die Seitenlängen   und   sowie die Höhe   gegeben ist, ist mit Zirkel und Lineal konstruierbar.

 
Parallelogramm mit den gegebenen Seitenlängen   und   sowie der Höhe  . Für die Konstruktion des rechten Winkels ist der Punkt   frei wählbar. Animation mit einer Pause von 10 s am Ende.

VerallgemeinerungenBearbeiten

Eine Verallgemeinerung auf   Dimensionen ist das Parallelotop, erklärt als die Menge   sowie deren Parallelverschiebungen. Die   sind dabei   linear unabhängige Vektoren. Parallelotope sind punktsymmetrisch.

Das dreidimensionale Parallelotop ist das Parallelepiped. Seine Seitenflächen sind sechs paarweise kongruente und in parallelen Ebenen liegende Parallelogramme. Ein Parallelepiped hat zwölf Kanten, von denen je vier parallel verlaufen und untereinander gleich lang sind, und acht Ecken, in denen diese Kanten in maximal drei verschiedenen Winkeln zueinander zusammenlaufen.

Verwendung in der TechnikBearbeiten

Parallelogramme finden sich häufig in der Mechanik. Durch vier Gelenke kann eine bewegliche, parallelentreue Lagerung hergestellt werden, die sogenannte Parallelogrammführung. Beispiele:

LiteraturBearbeiten

  • F. Wolff: Lehrbuch der Geometrie. Vierte verbesserte Auflage, Druck und Verlag von G. Reimer, Berlin 1845 (Online-Kopie).
  • P. Kall: Lineare Algebra für Ökonomen. Springer Fachmedien, Wiesbaden 1984, ISBN 978-3-519-02356-2.
  • Wilhelm Killing: Lehrbuch Der Analytischen Geometrie. Teil 2, Outlook Verlagsgesellschaft, Bremen 2011, ISBN 978-3-86403-540-1.

WeblinksBearbeiten

Commons: Parallelogramm – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Parallelogramm – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wiktionary: Rhomboid – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen