Hauptmenü öffnen

Gleichung

mathematische Aussage über die Gleichheit zweier Terme
Älteste gedruckte Gleichung (1557), in heutiger Schreibweise „14x + 15 = 71“[1]

Unter einer Gleichung versteht man in der Mathematik eine Aussage über die Gleichheit zweier Terme, die mit Hilfe des Gleichheitszeichens („=“) symbolisiert wird. Formal hat eine Gleichung die Gestalt

,

wobei der Term die linke Seite und der Term die rechte Seite der Gleichung genannt wird. Gleichungen sind entweder wahr beziehungsweise erfüllt (beispielsweise ) oder falsch (beispielsweise ). Wenn zumindest einer der Terme von Variablen abhängig ist, liegt nur eine Aussageform vor; ob die Gleichung wahr oder falsch ist, hängt dann von den konkreten eingesetzten Werten ab. Die Werte der Variablen, für die die Gleichung erfüllt ist, heißen Lösungen der Gleichung. Sind zwei oder mehr Gleichungen angegeben, spricht man auch von einem Gleichungssystem, eine Lösung desselben muss alle Gleichungen simultan erfüllen.

Typen von GleichungenBearbeiten

Gleichungen werden in vielen Zusammenhängen verwendet; dementsprechend gibt es verschiedene Möglichkeiten, die Gleichungen nach unterschiedlichen Gesichtspunkten einzuteilen. Die jeweiligen Einteilungen sind zu einem großen Teil unabhängig voneinander, eine Gleichung kann in mehrere dieser Gruppen fallen. So ist es etwa sinnvoll, von einem System linearer partieller Differentialgleichungen zu sprechen.

Einteilung nach GültigkeitBearbeiten

IdentitätsgleichungenBearbeiten

Gleichungen können allgemeingültig sein, also durch Einsetzen aller Variablenwerte aus einer gegebenen Grundmenge oder zumindest aus einer vorher definierten Teilmenge davon wahr sein. Die Allgemeingültigkeit kann entweder mit anderen Axiomen bewiesen werden oder selber als Axiom vorausgesetzt werden.

Beispiele sind:

  • der Satz des Pythagoras:   ist wahr für rechtwinklige Dreiecke, falls   die dem rechten Winkel gegenüberliegende Seite (Hypotenuse) und   die Katheten bezeichnen
  • das Assoziativgesetz:   ist wahr für alle natürlichen Zahlen   und allgemein für beliebige Elemente   einer Gruppe (als Axiom)
  • die erste binomische Formel:   ist wahr für alle reellen Zahlen  
  • die eulersche Identität:   ist wahr für alle reellen  

In diesem Zusammenhang spricht man auch von einem mathematischen Satz oder Gesetz. Zur Unterscheidung von nicht allgemeingültigen Gleichungen wird bei Identitäten statt des Gleichheitszeichens auch das Kongruenzzeichen („≡“) verwendet.

BestimmungsgleichungenBearbeiten

Häufig besteht eine Aufgabenstellung darin, alle Variablenbelegungen zu bestimmen, für die die Gleichung wahr wird. Diesen Vorgang bezeichnet man als Lösen der Gleichung. Zur Unterscheidung von Identitätsgleichungen werden solche Gleichungen als Bestimmungsgleichungen bezeichnet.[2] Die Menge der Variablenbelegungen, für die die Gleichung wahr ist, bezeichnet man als Lösungsmenge der Gleichung. Wenn es sich bei der Lösungsmenge um die leere Menge handelt, so bezeichnet man die Gleichung als unlösbar oder unerfüllbar.

Ob eine Gleichung lösbar ist oder nicht, kann von der betrachteten Grundmenge abhängen, zum Beispiel gilt:

  • die Gleichung   ist unlösbar als Gleichung über den natürlichen oder den rationalen Zahlen und besitzt die Lösungsmenge   als Gleichung über den reellen Zahlen
  • die Gleichung   ist unlösbar als Gleichung über den reellen Zahlen und besitzt die Lösungsmenge   als Gleichung über den komplexen Zahlen

Bei Bestimmungsgleichungen treten mitunter Variablen auf, die nicht gesucht sind, sondern als bekannt vorausgesetzt werden. Solche Variablen werden als Parameter bezeichnet. Beispielsweise lautet die Lösungsformel für die quadratische Gleichung

 

bei gesuchter Unbekannte   und gegebenen Parametern   und  

 .

Setzt man eine der beiden Lösungen   in die Gleichung ein, so verwandelt sich die Gleichung in eine Identität, wird also für eine beliebige Wahl von   und   zur wahren Aussage. Für   sind hier die Lösungen reell, ansonsten komplex.

DefinitionsgleichungenBearbeiten

Gleichungen können auch verwendet werden, um ein neues Symbol zu definieren. In diesem Fall wird das zu definierende Symbol links geschrieben, und das Gleichheitszeichen oft durch das Definitionszeichen („:=“) ersetzt oder über das Gleichheitszeichen „def“ geschrieben.

Zum Beispiel wird die Ableitung einer Funktion   an einer Stelle   durch

 

definiert. Im Gegensatz zu Identitäten sind Definitionen keine Aussagen; sie sind also weder wahr noch falsch, sondern nur mehr oder weniger zweckmäßig.

Einteilung nach rechter SeiteBearbeiten

Homogene GleichungenBearbeiten

Eine Bestimmungsgleichung der Form

 

heißt homogene Gleichung. Ist   eine Funktion, nennt man die Lösung   auch Nullstelle der Funktion. Homogene Gleichungen spielen bei der Lösungsstruktur linearer Gleichungssysteme und linearer Differentialgleichungen eine wichtige Rolle. Ist die rechte Seite einer Gleichung ungleich Null, heißt die Gleichung inhomogen.

FixpunktgleichungenBearbeiten

Eine Bestimmungsgleichung der Form

 

heißt Fixpunktgleichung und deren Lösung   nennt man Fixpunkt der Gleichung. Genaueres über die Lösungen solcher Gleichungen sagen Fixpunktsätze aus.

EigenwertproblemeBearbeiten

Eine Bestimmungsgleichung der Form

 

heißt Eigenwertproblem, wobei die Konstante   (der Eigenwert) und die Unbekannte   (der Eigenvektor) gemeinsam gesucht werden. Eigenwertprobleme besitzen vielfältige Einsatzbereiche in der linearen Algebra, beispielsweise bei der Analyse und Zerlegung von Matrizen, und in Anwendungsgebieten, beispielsweise der Strukturmechanik und der Quantenmechanik.

Einteilung nach LinearitätBearbeiten

Lineare GleichungenBearbeiten

Eine Gleichung heißt linear, wenn sie in die Form

 

gebracht werden kann, wobei der Term   unabhängig von   ist und der Term   linear in   ist, also

 

für Koeffizienten   gilt. Sinnvollerweise müssen die passenden Operationen definiert sein, es ist also notwendig, dass   und   aus einem Vektorraum   sind, und die Lösung   aus dem gleichen oder einem anderen Vektorraum   gesucht wird.

Lineare Gleichungen sind normalerweise wesentlich einfacher zu lösen als nichtlineare. So gilt für lineare Gleichungen das Superpositionsprinzip: Die allgemeine Lösung einer inhomogenen Gleichung ist die Summe einer Partikulärlösung der inhomogenen Gleichung und der allgemeinen Lösung der zugehörigen homogenen Gleichung.

Wegen der Linearität ist zumindest   eine Lösung einer homogenen Gleichung. Hat eine homogene Gleichung also eine eindeutige Lösung, so hat auch eine entsprechende inhomogene Gleichung höchstens eine Lösung. Eine verwandte, aber wesentlich tiefer gehende Aussage in der Funktionalanalysis ist die Fredholmsche Alternative.

Nichtlineare GleichungenBearbeiten

Nichtlineare Gleichungen werden oft nach der Art der Nichtlinearität unterschieden. Insbesondere in der Schulmathematik werden die nachfolgenden Grundtypen von nichtlinearen Gleichungen behandelt.[3]

Algebraische GleichungenBearbeiten

Handelt es sich bei dem Gleichungsterm um ein Polynom, spricht man von einer algebraischen Gleichung. Ist dabei das Polynom mindestens vom Grad zwei, so bezeichnet man die Gleichung als nichtlinear. Beispiele sind allgemeine quadratische Gleichungen der Form

 

oder kubische Gleichungen der Form

 .

Für Polynomgleichungen bis zum Grad vier gibt es allgemeine Lösungsformeln.

BruchgleichungenBearbeiten

Enthält eine Gleichung einen Bruchterm, bei dem die Unbekannte zumindest im Nenner vorkommt, spricht man von einer Bruchgleichung, zum Beispiel

 .

Durch Multiplikation mit dem Hauptnenner, im Beispiel  , lassen sich Bruchgleichungen auf algebraische Gleichungen zurückführen. Eine solche Multiplikation ist im Regelfall keine Äquivalenzumformung und es muss eine Fallunterscheidung vorgenommen werden, im Beispiel ist   nicht im Definitionsbereich der Bruchgleichung enthalten.

WurzelgleichungenBearbeiten

Bei Wurzelgleichungen steht die Unbekannte mindestens einmal unter einer Wurzel, beispielsweise

 

Wurzelgleichungen sind spezielle Potenzgleichungen mit Exponent  . Wurzelgleichungen lassen sich lösen, indem eine Wurzel isoliert wird und dann die Gleichung mit dem Wurzelexponenten   (im Beispiel ist  ) potenziert wird. Dieses Vorgehen wird wiederholt, bis alle Wurzeln eliminiert sind. Potenzieren mit geradzahligem Exponenten stellt keine Äquivalenzumformung dar und daher ist in diesen Fällen bei der Ermittlung der Lösung eine entsprechende Fallunterscheidung vorzunehmen. Im Beispiel führt Quadrieren zu der quadratischen Gleichung  , deren negative Lösung nicht im Definitionsbereich der Ausgangsgleichung liegt.

ExponentialgleichungenBearbeiten

Bei Exponentialgleichungen steht die Unbekannte mindestens einmal im Exponenten, zum Beispiel:

 

Exponentialgleichungen lassen sich durch Logarithmieren lösen. Umgekehrt sind Logarithmusgleichungen - also Gleichungen, bei denen die Unbekannte als Numerus (Argument einer Logarithmusfunktion) auftritt - durch Exponenzieren lösbar.

Trigonometrische GleichungenBearbeiten

Treten die Unbekannten als Argument mindestens einer Winkelfunktion auf, so spricht man von einer trigonometrischen Gleichung, beispielsweise

 

Die Lösungen trigonometrischer Gleichungen wiederholen sich im Allgemeinen periodisch, sofern die Lösungsmenge nicht auf ein bestimmtes Intervall, etwa  , beschränkt wird. Alternativ können die Lösungen durch eine ganzzahlige Variable   parametrisiert werden. Beispielsweise sind die Lösungen obiger Gleichung gegeben als

    mit    .

Einteilung nach gesuchten UnbekanntenBearbeiten

Algebraische GleichungenBearbeiten

Um Gleichungen, bei denen eine reelle Zahl oder ein reeller Vektor gesucht wird, von Gleichungen, bei denen beispielsweise eine Funktion gesucht ist, zu unterscheiden, wird manchmal auch die Bezeichnung algebraische Gleichung verwendet, wobei diese Bezeichnung dann aber nicht auf Polynome eingeschränkt ist. Diese Sprechweise ist jedoch umstritten.

Diophantische GleichungenBearbeiten

Sucht man ganzzahlige Lösungen einer skalaren Gleichung mit ganzzahligen Koeffizienten, so spricht man von einer Diophantischen Gleichung. Ein Beispiel einer kubischen Diophantischen Gleichung ist

 ,

von der ganzzahlige   gesucht werden, die die Gleichung erfüllen, hier die Zahlen  .

DifferenzengleichungenBearbeiten

Ist die Unbekannte eine Folge, so spricht man von einer Differenzengleichung. Ein bekanntes Beispiel einer linearen Differenzengleichung zweiter Ordnung ist

 ,

deren Lösung für Startwerte   und   die Fibonacci-Folge   ist.

FunktionalgleichungenBearbeiten

Ist die Unbekannte der Gleichung eine Funktion, die ohne Ableitungen auftritt, so spricht man von einer Funktionalgleichung. Ein Beispiel für eine Funktionalgleichung ist

 ,

deren Lösungen gerade die Exponentialfunktionen   sind.

DifferentialgleichungenBearbeiten

Wird in der Gleichung eine Funktion gesucht, die mit Ableitungen auftritt, so spricht man von einer Differentialgleichung. Differentialgleichungen treten bei der Modellierung von naturwissenschaftlichen Problemen sehr häufig auf. Die höchste auftretende Ableitung wird dabei Ordnung der Differentialgleichung genannt. Man unterscheidet:

 
 
 
 

IntegralgleichungenBearbeiten

Tritt die gesuchte Funktion in einem Integral auf, so spricht man von einer Integralgleichung. Ein Beispiel einer linearen Integralgleichung 1. Art ist

 .

GleichungskettenBearbeiten

Befinden sich in einer Zeile mehrere Gleichheitszeichen, so spricht man von einer Gleichungskette. In einer Gleichungskette sollen alle durch Gleichheitszeichen getrennten Ausdrücke vom Wert her gleich sein. Dabei ist jeder dieser Ausdrücke separat zu betrachten. Beispielsweise ist die Gleichungskette

 

falsch, weil sie in Einzelgleichungen zerlegt zu falschen Aussagen führt. Wahr ist dagegen zum Beispiel

 .

Gleichungsketten sind insbesondere wegen der Transitivität der Gleichheitsrelation sinnvoll interpretierbar. Gleichungsketten treten oft auch gemeinsam mit Ungleichungen in Abschätzungen auf, so gilt beispielsweise für  

 .

GleichungssystemeBearbeiten

Oft werden mehrere Gleichungen, die gleichzeitig erfüllt sein müssen, betrachtet und dabei mehrere Unbekannte gleichzeitig gesucht.

Lineare GleichungssystemeBearbeiten

Ein Gleichungssystem - also eine Menge von Gleichungen - heißt lineares Gleichungssystem, wenn alle Gleichungen linear sind. Beispielsweise ist

 

ein lineares Gleichungssystem bestehend aus zwei Gleichungen und drei Unbekannten   und  . Fasst man sowohl die Gleichungen, als auch die Unbekannten zu Tupeln zusammen, so lässt sich ein Gleichungssystem auch als eine einzelne Gleichung für einen unbekannten Vektor auffassen. So schreibt man in der Linearen Algebra ein Gleichungssystem als Vektorgleichung

 

mit einer Matrix  , den unbekannten Vektor   und der rechten Seite  , wobei   das Matrix-Vektor-Produkt ist. In obigem Beispiel sind

 ,       und    .

Nichtlineare GleichungssystemeBearbeiten

Gleichungssysteme, deren Gleichungen nicht alle linear sind, werden nichtlineare Gleichungssysteme genannt. Beispielsweise ist

 

ein nichtlineares Gleichungssystem mit den Unbekannten   und  . Für solche Gleichungssysteme gibt es keine allgemeingültigen Lösungsstrategien. Oftmals hat man nur die Möglichkeit, näherungsweise Lösungen mit Hilfe numerischer Verfahren zu bestimmen. Ein mächtiges Näherungsverfahren ist beispielsweise das Newton-Verfahren.

Eine Faustregel besagt, dass gleich viele Gleichungen wie Unbekannte benötigt werden, damit ein Gleichungssystem eindeutig lösbar ist. Das ist aber tatsächlich nur eine Faustregel, bis zu einem gewissen Grad gilt sie wegen des Hauptsatzes über implizite Funktionen für reelle Gleichungen mit reellen Unbekannten.

Lösen von GleichungenBearbeiten

Analytische LösungBearbeiten

Soweit es möglich ist, versucht man, die Lösungen einer Bestimmungsgleichung exakt zu ermitteln. Wichtigstes Hilfsmittel dabei sind Äquivalenzumformungen, durch die eine Gleichung schrittweise in andere äquivalente Gleichungen (die also dieselbe Lösungsmenge haben) umgeformt wird, bis man eine Gleichung erhält, deren Lösung einfach bestimmt werden kann.

Numerische LösungBearbeiten

Viele Gleichungen, insbesondere aus naturwissenschaftlichen Anwendungen, können nicht analytisch gelöst werden. In diesem Fall versucht man, am Computer eine näherungsweise numerische Lösung zu berechnen. Solche Verfahren werden in der numerischen Mathematik behandelt. Viele nichtlineare Gleichungen lassen sich approximativ lösen, indem die in der Gleichung auftretenden Nichtlinearitäten linear angenähert werden, und dann die entstehenden linearen Probleme gelöst werden (beispielsweise im Newton-Verfahren). Für andere Problemklassen, etwa bei der Lösung von Gleichungen in unendlich-dimensionalen Räumen, wird die Lösung in geeignet gewählten endlich-dimensionalen Unterräumen gesucht (beispielsweise in der Galerkin-Methode).

Qualitative AnalyseBearbeiten

Auch wenn eine Gleichung nicht analytisch gelöst werden kann, ist es dennoch oft möglich, mathematische Aussagen über die Lösung zu treffen. Insbesondere interessieren Fragestellungen, ob eine Lösung überhaupt existiert, ob sie eindeutig ist, und ob sie stetig von den Parametern der Gleichung abhängt. Ist dies der Fall spricht man von einem korrekt gestellten Problem. Eine qualitative Analyse ist auch bzw. gerade bei der numerischen Lösung einer Gleichung wichtig, damit sichergestellt ist, dass die numerische Lösung tatsächlich eine Näherungslösung der Gleichung liefert.

Siehe auchBearbeiten

WeblinksBearbeiten

 Wiktionary: Gleichung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  Commons: Equations – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. Robert Recorde: The Whetstone of Witte. London 1557, S. 238.
  2. Wolfgang Brauch: Mathematik für Ingenieure / Wolfgang Brauch ; Hans-Joachim Dreyer ; Wolfhart Haacke. Unter Mitarb. von Wolfgang Gentzsch. Teubner, Wiesbaden 2006, ISBN 3-8351-0073-4, S. 40.
  3. Hauptseite Gleichungen. (Nicht mehr online verfügbar.) Landesbildungsserver Baden-Württemberg, archiviert vom Original am 22. Mai 2015; abgerufen am 8. März 2011.   Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.schule-bw.de