Hauptmenü öffnen

Kreuzprodukt

Verknüpfung von zwei Vektoren, deren Ergebnis wieder ein Vektor ist
Kreuzprodukt

Das Kreuzprodukt, auch Vektorprodukt, vektorielles Produkt, oder äußeres Produkt, ist eine Verknüpfung im dreidimensionalen euklidischen Vektorraum, die zwei Vektoren wieder einen Vektor zuordnet. Um es von anderen Produkten, insbesondere vom Skalarprodukt, zu unterscheiden, wird es im deutsch- und englischsprachigen Raum mit einem Malkreuz als Multiplikationszeichen geschrieben (vgl. Abschnitt Schreibweisen). Die Namen Kreuzprodukt und Vektorprodukt gehen auf den Physiker Josiah Willard Gibbs zurück, der Name äußeres Produkt wurde von dem Mathematiker Hermann Graßmann geprägt.[1]

Das Kreuzprodukt der Vektoren und ist ein Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht und mit ihnen ein Rechtssystem bildet. Die Länge dieses Vektors entspricht dem Flächeninhalt des Parallelogramms, das von den Vektoren und aufgespannt wird.

In der Physik tritt das Kreuzprodukt an vielen Stellen auf. Zum Beispiel im Elektromagnetismus bei der Berechnung der Lorentzkraft oder des Poynting-Vektors. In der klassischen Mechanik bei Drehgrößen wie dem Drehmoment und Drehimpuls oder Scheinkräften wie der Corioliskraft.

Inhaltsverzeichnis

Geometrische DefinitionBearbeiten

 
Rechte-Hand-Regel

Das Kreuzprodukt   von zwei Vektoren   und   im dreidimensionalen Anschauungsraum ist ein Vektor, der orthogonal zu   und  , und damit orthogonal zu der von   und   aufgespannten Ebene ist.

Dieser Vektor ist so orientiert, dass   und   in dieser Reihenfolge ein Rechtssystem bilden. Mathematisch heißt das, dass die drei Vektoren   und   gleich orientiert sind wie die Vektoren  ,   und   der Standardbasis. Im physikalischen Raum bedeutet es, dass sie sich wie Daumen, Zeigefinger und abgespreizter Mittelfinger der rechten Hand verhalten (Rechte-Hand-Regel). Ein Drehen des ersten Vektors   in den zweiten Vektor   ergibt die positive Richtung des Vektors   über den Rechtsschraubensinn.

Der Betrag von   gibt den Flächeninhalt des von   und   aufgespannten Parallelogramms an. Ausgedrückt durch den von   und   eingeschlossenen Winkel   gilt

 

Dabei bezeichnen   und   die Längen der Vektoren   und  , und   ist der Sinus des von ihnen eingeschlossenen Winkels  .

Zusammenfassend gilt also

 

wobei der Vektor   derjenige zu   und   senkrechte Einheitsvektor ist, der diese zu einem Rechtssystem ergänzt.

SchreibweisenBearbeiten

Je nach Land sind für das Vektorprodukt zum Teil unterschiedliche Schreibweisen gebräuchlich. Im englisch- und deutschsprachigen Raum wird für das Vektorprodukt zweier Vektoren   und   für gewöhnlich die Schreibweise   verwendet, in Frankreich und Italien wird dagegen die Schreibweise   bevorzugt. In Russland wird das Vektorprodukt oft in der Schreibweise   oder   notiert.

Die Schreibweise   und die Bezeichnung äußeres Produkt werden nicht nur für das Vektorprodukt verwendet, sondern auch für die Verknüpfung, die zwei Vektoren einen sogenannten Bivektor zuordnet, siehe Graßmann-Algebra.

Komponentenweise BerechnungBearbeiten

In einem rechtshändigen kartesischen Koordinatensystem bzw. im reellen Koordinatenraum   mit dem Standardskalarprodukt und der Standardorientierung gilt für das Kreuzprodukt:

 

Ein Zahlenbeispiel:

 

Eine Merkregel für diese Formel beruht auf einer symbolischen Darstellung über die Determinante. Dabei notiert man eine  -Matrix, in deren erster Spalte die Symbole  ,   und   für die Standardbasis stehen. Die zweite Spalte wird von den Komponenten des Vektors   und die dritte von denen des Vektors   gebildet. Diese Determinante berechnet man nach den üblichen Regeln, zum Beispiel indem man sie nach der ersten Spalte entwickelt

 

oder mit Hilfe der Regel von Sarrus:

 

Mit dem Levi-Civita-Symbol   schreibt sich das Kreuzprodukt als

 

EigenschaftenBearbeiten

BilinearitätBearbeiten

Das Kreuzprodukt ist bilinear,[2] das heißt, für alle Zahlen  ,   und   und alle Vektoren  ,   und   gilt

 

Alternierende AbbildungBearbeiten

Das Kreuzprodukt eines Vektors mit sich selbst oder einem kollinearen Vektor ergibt den Nullvektor

 .

Bilineare Abbildungen, für die diese Gleichung gilt, werden alternierend genannt.[2]

AntikommutativitätBearbeiten

Das Kreuzprodukt ist antikommutativ. Das heißt, bei Vertauschung der Vektoren wechselt es das Vorzeichen:[2]

 

Jacobi-IdentitätBearbeiten

Das Kreuzprodukt ist nicht assoziativ. Stattdessen gilt die Jacobi-Identität, das heißt die zyklische Summe wiederholter Kreuzprodukte verschwindet:

 

Aufgrund dieser Eigenschaft und den zuvor genannten bildet der   zusammen mit dem Kreuzprodukt eine Lie-Algebra.

Beziehung zur DeterminanteBearbeiten

Für jeden Vektor   gilt:

 .

Dabei bezeichnet der Malpunkt das Skalarprodukt. Durch diese Bedingung ist das Kreuzprodukt eindeutig bestimmt.[2]

Graßmann-IdentitätBearbeiten

Für das wiederholte Kreuzprodukt von drei Vektoren (auch doppeltes Vektorprodukt genannt[3]) gilt die Graßmann-Identität (auch Graßmannscher Entwicklungssatz, nach Hermann Graßmann). Diese lautet:

 

bzw.

 

wobei die Malpunkte das Skalarprodukt bezeichnen. In der Physik wird oft die Schreibweise

 

verwendet. Nach dieser Darstellung wird die Formel auch BAC-CAB-Formel genannt. In Indexschreibweise lautet die Graßmann-Identität:

 .

Hierbei ist   das Levi-Civita-Symbol und   das Kronecker-Delta.

Lagrange-IdentitätBearbeiten

Für das Skalarprodukt von zwei Kreuzprodukten gilt[2]

 

Für das Quadrat der Norm erhält man hieraus

 

also gilt für den Betrag des Kreuzproduktes:

 

Da  , der Winkel zwischen   und  , immer zwischen 0° und 180° liegt, ist  

Kreuzprodukt aus zwei KreuzproduktenBearbeiten

 

Sonderfälle:

 
 
 

KreuzproduktmatrixBearbeiten

Das Kreuzprodukt definiert für einen festen Vektor   eine lineare Abbildung, die einen Vektor   auf den Vektor   abbildet. Diese kann mit einem schiefsymmetrischen Tensor zweiter Stufe identifiziert werden. Bei Verwendung der Standardbasis   entspricht die lineare Abbildung einer Matrixoperation. Die schiefsymmetrische Matrix

     mit     

leistet das Gleiche wie das Kreuzprodukt mit  , d. h.  :

 .

Die Matrix   heißt Kreuzproduktmatrix. Sie wird auch mit   bezeichnet.

Bei gegebener schiefsymmetrischer Matrix   gilt

 ,

wobei   die Transponierte von   ist, und man erhält den zugehörigen Vektor aus

 .

Hat   die Gestalt  , so gilt für die zugehörige Kreuzproduktmatrix:

  und   für alle  .

Hierbei bezeichnet „ “ das dyadische Produkt.

Polare und axiale VektorenBearbeiten

Bei der Anwendung des Kreuzprodukts auf vektorielle physikalische Größen spielt die Unterscheidung in polare Vektoren (das sind solche, die sich wie Differenzen zweier Ortsvektoren verhalten, zum Beispiel Geschwindigkeit, Beschleunigung, Kraft, elektrische Feldstärke) und axiale Vektoren (die sich wie Drehachsen verhalten, zum Beispiel Winkelgeschwindigkeit, Drehmoment, Drehimpuls, magnetische Flussdichte) eine Rolle. Polaren Vektoren ordnet man die Signatur (oder Parität) +1 zu, axialen Vektoren die Signatur −1.

Bei der vektoriellen Multiplikation zweier Vektoren multiplizieren sich ihre Signaturen: zwei Vektoren mit gleicher Signatur liefern ein axiales, zwei mit verschiedener Signatur ein polares Vektorprodukt. Operationell ausgedrückt: Ein Vektor überträgt seine Signatur auf des Kreuzprodukt mit einem anderen Vektor, wenn dieser axial ist; ist der andere Vektor dagegen polar, bekommt das Kreuzprodukt die entgegengesetzte Signatur.

Vom Kreuzprodukt abgeleitete OperationenBearbeiten

SpatproduktBearbeiten

Die Kombination von Kreuz- und Skalarprodukt in der Form

 

wird als Spatprodukt bezeichnet. Das Ergebnis ist eine Zahl, die dem orientierten Volumen des durch die drei Vektoren aufgespannten Spats (Parallelepipeds) entspricht. Das Spatprodukt lässt sich auch als Determinante der benannten drei Vektoren darstellen

 

RotationBearbeiten

In der Vektoranalysis wird das Kreuzprodukt zusammen mit dem Nabla-Operator   verwendet, um den Differentialoperator „Rotation“ zu bezeichnen. Ist   ein Vektorfeld im  , so ist

 

wieder ein Vektorfeld, die Rotation von  .

Formal wird dieses Vektorfeld also als Kreuzprodukt des Nabla-Operators und des Vektorfelds   berechnet. Die hierbei auftretenden Ausdrücke   sind jedoch keine Produkte, sondern Anwendungen des Differentialoperators   auf die Funktion  . Deshalb sind die oben angeführten Rechenregeln wie z. B. die Graßmann-Identität in diesem Fall nicht gültig. Stattdessen gelten für doppelte Kreuzprodukte mit dem Nabla-Operator besondere Rechenregeln.

Kreuzprodukt im n-dimensionalen RaumBearbeiten

Das Kreuzprodukt lässt sich für beliebige Dimension   auf den n-dimensionalen Raum   verallgemeinern. Dabei ist das Kreuzprodukt im   kein Produkt von zwei Faktoren, sondern von   Faktoren.

Das Kreuzprodukt   der Vektoren   ist dadurch charakterisiert, dass für jeden Vektor   gilt

 

In Koordinaten lässt sich das Kreuzprodukt im   wie folgt berechnen. Es sei   der zugehörige  -te kanonische Einheitsvektor. Für   Vektoren

 

gilt

 

analog zu der oben erwähnten Berechnung mit Hilfe einer Determinante.

Der Vektor   ist orthogonal zu  . Die Orientierung ist so, dass die Vektoren   in dieser Reihenfolge ein Rechtssystem bilden. Der Betrag von   ist gleich dem  -dimensionalen Volumen des von   aufgespannten Parallelotops.

Für   erhält man dabei kein Produkt, sondern nur eine lineare Abbildung

 ,

die Rotation um 90° im Uhrzeigersinn.

Hieran ist auch zu erkennen, dass die Komponentenvektoren des Kreuzprodukts inklusive des Ergebnisvektors in dieser Reihenfolge – anders als aus dem   gewohnt – im Allgemeinen kein Rechtssystem bilden; diese entstehen nur in reellen Vektorräumen mit ungeradem  , bei geraden   bildet der Ergebnisvektor mit den Komponentenvektoren ein Linkssystem. Dies liegt wiederum daran, dass die Basis   in Räumen geradzahliger Dimension nicht dasselbe ist wie die Basis  , die per Definition (siehe oben) ein Rechtssystem ist. Zwar würde eine kleine Veränderung der Definition dazu führen, dass die Vektoren in der erstgenannten Reihenfolge im   stets ein Rechtssystem bilden, nämlich wenn in der symbolischen Determinante die Spalte der Einheitsvektoren ganz nach rechts gesetzt würde, diese Definition hat sich allerdings nicht durchgesetzt.

Eine noch weitergehende Verallgemeinerung führt auf die Graßmann-Algebren. Anwendung finden diese Algebren etwa in Formulierungen der Differentialgeometrie, welche die rigorose Beschreibung der klassischen Mechanik (Symplektische Mannigfaltigkeiten), der Quantengeometrie sowie in allererster Linie der Allgemeinen Relativitätstheorie erlaubt. In der Literatur wird das Kreuzprodukt im höherdimensionalen und ggf. gekrümmten Raum meist indexweise mit Levi-Civita-Symbol ausgeschrieben.

AnwendungenBearbeiten

Das Kreuzprodukt findet Anwendung in vielen Bereichen der Mathematik und Physik, unter anderem bei folgenden Themen:

WeblinksBearbeiten

  Commons: Kreuzprodukt – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Kreuzprodukt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

QuellenBearbeiten

EinzelnachweiseBearbeiten

  1. Max Päsler: Grundzüge der Vektor- und Tensorrechnung. Walter de Gruyter, 1977, ISBN 3-11-082794-8, S. 33.
  2. a b c d e Herbert Amann, Joachim Escher: Analysis. 2. Band 2. korrigierte Auflage. Birkhäuser-Verlag, Basel u. a. 2006, ISBN 3-7643-7105-6 (Grundstudium Mathematik), S. 312–313
  3. Doppeltes Vektorprodukt@1@2Vorlage:Toter Link/elearning.physik.uni-frankfurt.de (Seite nicht mehr abrufbar, Suche in Webarchiven  Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis. (Webseite von elearning.physik.uni-frankfurt.de, abgerufen am 5. Juni 2015, passwortgeschützt)