Corioliskraft

Schein- oder Trägheitskraft in einem rotierenden Bezugssystem

Die Corioliskraft [kɔrjoˈliːskraft][1] ist eine der drei Trägheitskräfte der klassischen Physik, die in einem rotierenden Bezugssystem auftreten. Die Corioliskraft tritt genau dann in Erscheinung, wenn der Körper sich in dem rotierenden Bezugssystem bewegt, und wenn diese Bewegung nicht parallel zur Rotationsachse verläuft. Sie ist proportional zur Masse und zur Geschwindigkeit des Körpers sowie zur Winkelgeschwindigkeit, mit der das Bezugssystem rotiert. Ihre Stärke ist aber unabhängig von der Größe des Abstands des Körpers von der Achse. Sie steht senkrecht zur momentanen Bewegungsrichtung des Körpers im rotierenden Bezugssystem und bewirkt daher keine Vergrößerung oder Verkleinerung seiner Geschwindigkeit, sondern eine Änderung der Richtung (relativ zum rotierenden Bezugssystem). Außerdem steht sie senkrecht zur Drehachse. Die beiden anderen Trägheitskräfte im rotierenden Bezugssystem, Zentrifugalkraft und Eulerkraft, wirken auch, wenn der Körper im rotierenden Bezugssystem ruht. Als Corioliseffekt wird jede Erscheinung bezeichnet, die durch die Corioliskraft entsteht.

Ein Hurrikan, der unter Beteiligung der Corioliskraft entsteht

Wird eine Bewegung auf der Erde relativ zur Erde als rotierendem Bezugssystem beschrieben, ist der Einfluss der Corioliskraft bei großräumigen Phänomenen deutlich erkennbar. Beispiele in der Meteorologie sind die Drehrichtungen der Windfelder um Hoch- und Tiefdruckgebiete und die Ausbildung erdumspannender Windsysteme wie der Passatwinde und des Jetstreams. In der Ozeanographie beeinflusst die Corioliskraft maßgeblich die Meeresströmungen, sie verursacht z. B. die kalten Strömungen längs der nord- und südamerikanischen Pazifikküste. Die verbreitete These, dass sie für die Drehrichtung des Strudels in der Badewanne und im Spülbecken verantwortlich sei, trifft hingegen nicht zu. In der Technik ist die Corioliskraft bei allen Bewegungen zu berücksichtigen, die sich relativ zu einer rotierenden Basis abspielen, z. B. wenn die zwei Teile eines Roboterarms sich gleichzeitig bewegen, oder wenn der Ausleger eines Baukrans schwenkt und gleichzeitig nach innen oder außen fährt. Fahrgeschäfte in Freizeitparks mit mehreren Rotationsbewegungen lassen die Fahrgäste die ständig wechselnde Corioliskraft spüren, auch wenn sie dort praktisch dauernd mit einer ebenfalls veränderlichen Zentrifugalkraft kombiniert wirkt.

Die Corioliskraft wurde erstmals 1775 von Pierre-Simon Laplace korrekt hergeleitet. Sie wird aber nach Gaspard Gustave de Coriolis benannt, der sie in einer 1835 erschienenen Publikation ausführlich behandelte.

EinführungBearbeiten

 
Bewegung eines Körpers vom Mittelpunkt einer rotierenden Scheibe ohne Reibung nach außen; oben: im ruhenden Bezugssystem bewegt sich der Körper gleichförmig geradlinig; unten: im mitrotierenden Bezugssystem (Scheibe) bewegt sich der Körper auf einer spiralförmig gekrümmten Bahn.

In einem rotierenden Bezugssystem, zum Beispiel auf einer sich drehenden Scheibe, kann festgestellt werden, dass ein Körper, auf den keine äußere Kraft wirkt, sich nicht entsprechend dem Trägheitsprinzip gleichförmig geradlinig bewegt, sondern senkrecht zur Bewegungsrichtung abgelenkt wird. Seine Bahn ist gekrümmt, er vollführt also eine beschleunigte Bewegung. Die entsprechende Beschleunigung wird als Coriolisbeschleunigung bezeichnet und als Wirkung einer seitlich einwirkenden Kraft, der Corioliskraft, gedeutet. Ebenso stellt man fest, dass eine Kraft senkrecht zur Bewegungsrichtung einwirken muss, wenn eine Bewegung in einem rotierenden Bezugssystem geradlinig sein soll. Diese Kraft ist der Corioliskraft entgegengesetzt und hat den gleichen Betrag.

In einem bekannten Demonstrationsexperiment zum Corioliseffekt lässt man eine Kugel möglichst reibungsfrei über eine rotierende Scheibe rollen. Von außerhalb der Scheibe aus gesehen rollt die Kugel geradlinig, denn sie bewegt sich auf Grund ihrer Trägheit gleichförmig (in der Animation die gerade gelbe Spur auf der oben abgebildeten Scheibe).[2] Auf der Scheibe hingegen, also im rotierenden Bezugssystem, wird die Kugel quer zu ihrer Bewegungsrichtung abgelenkt und beschreibt eine gekrümmte Bahn (in der Animation die gelbe Spur auf der unten abgebildeten Scheibe). Zur Erklärung, dass der Körper nicht die anfängliche Richtung auf der Scheibe beibehält, wird die seitlich einwirkende Corioliskraft eingeführt. Um diese Bewegungsrichtung beizubehalten, müsste eine reale äußere Kraft auf den Körper einwirken, die der Corioliskraft genau entgegengesetzt gleich ist.

Bezeichnet man mit   die vektorielle Winkelgeschwindigkeit der Rotation des Bezugssystems, deren Betrag angibt, wie schnell das Bezugssystem rotiert, und deren Richtung die Drehachse ist, und mit   die Geschwindigkeit, mit der sich der Körper im rotierenden Bezugssystem bewegt, dann berechnet sich die Coriolisbeschleunigung   ganz allgemein nach der Formel

 .

Der vorliegende Artikel folgt dieser heute in der Physik gebräuchlichen Definition des Vorzeichens.[3] Die Verknüpfung der Größen   und   wird durch das Kreuzprodukt mit dem Symbol   ausgedrückt. Die drei Vektoren  ,   und   bilden dabei ein Rechtssystem. Zu seiner Veranschaulichung kann man die sogenannte „Drei-Finger-Regel“ benutzen.

In Analogie zum zweiten Newtonschen Gesetz wird in der Physik als Ursache dieser Beschleunigung eine dazu proportionale Kraft angenommen, die Corioliskraft, die das Produkt aus der Masse   des Körpers und der Coriolisbeschleunigung ist:[4]

 

Diese Kraft ist eine Trägheitskraft und tritt nur im rotierenden Bezugssystem auf. Da sich aber für diese Kraft keine physikalische Ursache findet und auch kein anderer Körper, auf den sie zurückwirkt, wird sie als fiktive Kraft oder Scheinkraft bezeichnet.

Die Richtung des resultierenden Vektors   ist sowohl senkrecht zur momentanen Bewegungsrichtung als auch zur Drehachse des Systems. Die Corioliskraft liegt daher stets in einer Ebene senkrecht zur Drehachse, bei Bewegungen parallel zur Drehachse ist sie Null. Schaut man als mitrotierender Beobachter entgegen der Richtung der Winkelgeschwindigkeit, d. h. senkrecht auf die gegen den Uhrzeigersinn rotierende Ebene, wird der Körper immer nach rechts abgelenkt, gleich, ob er sich auf die Achse zu- oder wegbewegt oder um sie herum.

 
Zentrifugal- und Corioliskraft beeinflussen die Bewegungsabläufe auf dem „Teufelsrad“

Diesen Effekt nutzt das sogenannte Teufelsrad auf Jahrmärkten. Personen sollen auf einer sich drehenden Scheibe laufen, z. B. längs einer aufgemalten geraden Linie radial zum Zentrum. Für diese Bewegung sind Kräfte erforderlich, da sie von außen betrachtet keine geradlinige Bewegung ist. Da die Umfangsgeschwindigkeit der Scheibe auf dem Weg nach innen immer kleiner wird, muss der Läufer eine Kraft entgegen der Drehrichtung aufbringen, um seinen Körper entsprechend zu verlangsamen. Diese Kraft ist entgegengesetzt gleich groß wie die Corioliskraft. Die Corioliskraft kann hier auch als Trägheitswiderstand interpretiert werden. Da die Zentrifugalkraft und die Corioliskraft bei diesen Bedingungen senkrecht aufeinander stehen, können sie vom Läufer unterschieden werden, selbst wenn die Scheibe keinen Blick nach außen zuließe. Das Auftreten von äußeren Kräften bei einer gleichförmigen Bewegung ist somit der Nachweis, dass man sich nicht in einem Inertialsystem befindet.

Anschauliche HerleitungBearbeiten

Die folgenden Überlegungen, die das Phänomen anhand endlicher Intervalle in Zeit und Raum näherungsweise verständlich machen, ergeben im Grenzfall infinitesimal kleiner Intervalle eine exakte Begründung der Corioliskraft.[5][6][7]

Einfaches BeispielBearbeiten

 
Gleichförmig lineare Bewegung längs der festen x-Achse, vom rotierenden Koordinatensystem aus beobachtet

Die gleichförmig-geradlinige Bewegung eines kräftefreien Körpers wird von einem rotierenden  -Koordinatensystem aus beschrieben. Zur Zeit   sei der Körper bei  , und die  -Achse liege gerade in seiner Bewegungsrichtung. Zur Zeit  , wenn der Körper den Weg   zurückgelegt hat, hat sich diese Achse um den Winkel   gedreht, so dass sie nun vom geradeaus fliegenden Körper einen Abstand   hat. Für kleine Zeiten gilt  , also wächst der Abstand quadratisch:  . Vom rotierenden Bezugssystem aus gesehen bewegt der kräftefreie Körper sich demnach gleichförmig beschleunigt quer zur ursprünglichen Bewegungsrichtung nach dem Gesetz  . Die Beschleunigung   ist die Coriolisbeschleunigung.

Wenn der Körper sich stattdessen entlang der rotierenden  -Achse bewegen soll, kann er nicht kräftefrei sein, denn die eben berechnete Coriolisbeschleunigung muss durch eine äußere Kraft mit der Stärke   kompensiert werden. Diese Kraft ist das Negative der Corioliskraft.

Diese einfache Herleitung gilt genau genommen nur für die infinitesimale Umgebung des Mittelpunkts. Für andere Punkte der Drehscheibe siehe die folgenden Abschnitte. Für die weitere Bewegung des Körpers siehe die Herleitung der Spiralbahn im Abschnitt Scheibenexperiment.

Coriolisbeschleunigung bei radialer Bewegung von der Drehachse wegBearbeiten

 
Ablenkung durch die Corioliskraft bei radialer Bewegung

Auf einer Scheibe steht eine Person im Abstand   vom Zentrum (roter Punkt A), und weiter außen im Abstand   steht ein Pfahl (roter Punkt 1). Die Person wirft einen Körper mit der Geschwindigkeit   zum Pfahl. Wenn die Scheibe ruhen würde, würde der Körper längs der roten Linie fliegen und den Pfahl nach der Zeit   treffen. Wenn die Person von der Drehung (oder von deren Wirkung auf freie Bewegungen) nichts weiß, wird sie immer diese geradlinige Bewegung in der Richtung erwarten, in der sie den Körper losgeworfen hat.

Während der geworfene Körper in der Luft ist, dreht sich die Scheibe um den Winkel  , wobei   die Winkelgeschwindigkeit ist. Die mitbewegte Person legt dabei auf dem Kreisbogen die Strecke   zurück (blauer Pfeil) und befindet sich dann am roten Punkt B. Der Pfahl legt auf seinem Kreisbogen eine größere Strecke   zurück, weil er weiter außen steht. Er befindet sich dann am roten Punkt 2. Die Differenz der beiden Strecken von Pfahl und Person ist

 .

Der Werfer erwartet den geworfenen Körper an dem Ort, an dem der Pfahl sich jetzt befindet, also am Punkt 2 am Ende der gepunkteten geraden roten Linie. Für ihn ist aber der Körper längs der gebogenen gepunkteten roten Linie im Abstand   am Pfahl vorbei geflogen.

Das lässt sich von einem „ruhenden“ Beobachter aus, der neben der Drehscheibe steht und keine vom beschleunigten Bezugssystem bedingten Trägheitskräfte zu berücksichtigen hat, so erklären: Der Körper hat sich zunächst mit der werfenden Person auf der rotierenden Scheibe mitbewegt. Er hat also im Moment des Abwurfs eine tangentiale Umlaufgeschwindigkeit   und erhält senkrecht dazu die radiale Wurfgeschwindigkeit   zusätzlich. Nach dem Abwurf bewegt er sich mit der aus   und   resultierenden Geschwindigkeit in gerader Linie (rot-blauer Pfeil). In radialer Richtung legt er die Strecke   zurück, in tangentialer Richtung die Strecke   und erreicht daher die mit dem grünen Kreuz markierte Stelle. Die Strecke in tangentialer Richtung ist genauso lang wie die Strecke, die die Person währenddessen auf ihrem Kreisbogen zurücklegt, denn  . Wenn der Körper am grünen Kreuz ankommt, fehlt ihm bis zum Pfahl noch das Wegstück  .

Nun wächst   mit der Zeit quadratisch an, denn es gilt:

 .

Für die mitrotierende Person sieht das aus wie eine gleichmäßig beschleunigte Bewegung nach dem Weg-Zeit-Gesetz

 ,

wobei   die Beschleunigung ist.

Somit kann die mitrotierende Person die Abweichung des Körpers von der beabsichtigten Richtung durch die Beschleunigung

 

erklären. Dies ist die Coriolisbeschleunigung, die in diesem Fall nur tangential gerichtet ist.

Diese Herleitung ist insofern nicht ganz beweiskräftig, als die Stücke auf den Kreisbögen wie Geraden behandelt wurden. Das ist im Grenzfall infinitesimal kleiner Strecken aber exakt. Daher ist die so erhaltene Formel gültig.

Coriolisbeschleunigung bei Kreisbewegung um die Drehachse herumBearbeiten

Ganz allgemein ist zur Beibehaltung einer Kreisbewegung im Abstand   mit der beliebigen Geschwindigkeit   eine Beschleunigung   in Richtung Mittelpunkt erforderlich. Wenn ein rotierender Körper im Inertialsystem die Geschwindigkeit   hat, ergibt sich   als die Zentripetalbeschleunigung, die bei allen Kreisbewegungen auftritt und durch die Zentripetalkraft bewirkt wird.

Bewegt sich ein Körper mit der Geschwindigkeit   (Relativgeschwindigkeit) in einem Bezugssystem, das eine Rotationsbewegung mit der Winkelgeschwindigkeit   ausführt, dann ist die Geschwindigkeit des Körpers vom Inertialsystem aus gesehen die Summe aus der Umlaufgeschwindigkeit   und der Relativgeschwindigkeit  :

 .

Für die Zentripetalbeschleunigung des Körpers folgt daraus:

 .

Dies ist die Zentripetalbeschleunigung, die im ruhenden Bezugssystem zur betrachteten Bewegung gehört. Sie setzt sich aus drei Termen zusammen. Der erste ist die Zentripetalbeschleunigung die ein Körper erfährt, der mit dem Bezugssystem verbunden ist. Es folgen die Relativbeschleunigung und ein Term, der der Coriolisbeschleunigung entgegengesetzt ist. Das Beispiel zeigt, dass diese Aufteilung vom gewählten Bezugssystem abhängt, also willkürlich ist.[8]

Aufgelöst nach der Radialbeschleunigung im rotierenden Bezugssystem:

 .

Der zweite Term ist die Zentrifugalbeschleunigung. Sie ist entgegengesetzt gleich groß wie die Zentripetalbeschleunigung eines Körpers, der mit dem Bezugssystem verbunden ist. Der dritte Term ist die Coriolisbeschleunigung.

Keine Coriolisbeschleunigung bei Bewegung parallel zur DrehachseBearbeiten

Eine Bewegung eines Körpers parallel zur Rotationsachse ruft keine Corioliskraft hervor, denn zu ihrer Erklärung sind keine zusätzlichen Kräfte nötig. Z. B. sei der Fall betrachtet, dass auf einer waagerechten Drehscheibe in gewissem Abstand vom Mittelpunkt eine senkrechte Kletterstange steht, an der eine Person herabgleitet. Für sie bleibt die Zentrifugalkraft konstant, weil der Abstand von der Drehachse konstant bleibt. Die zur Wahrung des konstanten Abstands nötige Haltekraft, die von der Stange aufgebracht wird, bleibt dann auch konstant. Für einen ruhenden Beobachter ist die Abwärtsbewegung parallel zur Achse überlagert mit einer Kreisbewegung um die Achse, zusammen ist das eine Schraubenbewegung. Die für die Kreisbewegung um die Achse erforderliche Zentripetalkraft wird von der Stange ausgeübt und ist unabhängig von der Höhe und vertikalen Bewegung des Körpers.

Anders scheint es zunächst auszusehen, wenn man auf der Drehscheibe senkrecht in die Höhe hüpft oder einen Gegenstand parallel zur Drehachse hochwirft. Beim Herabfallen wird nämlich nicht der Ausgangspunkt wieder erreicht – weder in Bezug zu der Scheibe noch in Bezug zum festen Erdboden. Aber auch bei dieser Ablenkung tritt keine Corioliskraft in Erscheinung, sondern nur das zeitweise Fehlen der Haltekraft bzw. Zentripetalkraft, die im vorigen Beispiel die ganze Zeit von der Stange ausgeübt wurde. Der Körper wird dann für den rotierenden Beobachter durch die Zentrifugalkraft nach außen beschleunigt, für den ruhenden Beobachter bewegt er sich einfach geradlinig weiter mit seiner anfänglichen Momentangeschwindigkeit. Beide Beschreibungen führen zum selben Ergebnis.

Unzureichende HerleitungBearbeiten

Des öfteren (sogar in manchen Lehrbüchern) wird die Corioliskraft allein mit dem Umstand veranschaulicht oder sogar begründet, dass ein Körper auf der Drehscheibe bei zunehmender Entfernung von der Drehachse eine höhere Umfangsgeschwindigkeit erhalten müsse, um sich mit der Scheibe mitzudrehen. Das ist aber keine richtige Begründung, denn sie erklärt nur die halbe Größe der Corioliskraft, wie schon die einfache Berechnung mit den Beträgen der Vektoren zeigt: Wenn der Körper bei einer konstanten radialen Geschwindigkeit   in der Zeit   seinen Abstand um   vergrößert, nimmt seine Umfangsgeschwindigkeit um   zu. Daraus ergibt sich die erforderliche Beschleunigung zu  . Das ist nur halb so groß wie die wirkliche Coriolisbeschleunigung. Der Fehler dieser ungenügenden Herleitung liegt in der inkonsistenten Behandlung der Bezugssysteme:   ist eine Geschwindigkeit im rotierenden Bezugssystem,   im ruhenden Bezugssystem. Im Einzelnen betrachtet, liegt der Fehler in der unzureichenden Anwendung der Vorschrift, wie die zeitliche Ableitung einer Variablen relativ zu den Achsen eines rotierenden Bezugssystems zu bilden ist. Wie in der Herleitung dieser Vorschrift ersichtlich, ist für das Ableiten die Produktregel der Differentialrechnung anzuwenden, aus der sich ein zusätzlicher Summand für die zeitliche Ableitung der bewegten Basisvektoren des rotierenden Koordinatensystems ergibt. Da die Beschleunigung sich durch zweimaliges Differenzieren des Orts ergibt, ist die Produktregel zweimal anzuwenden. Der Fehler in der obigen Begründung der Corioliskraft besteht darin, dass nur die erste Ableitung richtig durchgeführt wird, bei der zweiten aber die Bewegung des Koordinatensystems unbeachtet bleibt. In Formeln lautet die Vorschrift fürs Ableiten:

 .

Setzt man für die Leerstelle   den Ort   ein, ergibt die Formel richtig (denn  )

 .

Leitet man diese Gleichung das zweite Mal nach der Zeit ab, ohne die besondere Vorschrift bei rotierenden Systemen zu berücksichtigen, ergibt sich nur die halbe Coriolisbeschleunigung:   (Anmerkung: wegen   ist  ). Erst wenn man auch hierbei den Zusatzterm mit dem Kreuzprodukt berücksichtigt, kommt der richtige Wert heraus.

Herleitung aus den kinematischen GrundgleichungenBearbeiten

Herleitung durch Transformation aus einem InertialsystemBearbeiten

Für die Herleitung der Corioliskraft im Rahmen der Newtonschen Mechanik betrachte man ein Bezugssystem  , das sich in einem Inertialsystem   befindet und mit der konstanten Winkelgeschwindigkeit   rotiert. Der Koordinatenursprung des Systems   sei fest im Inertialsystem verankert, außer der Rotation trete also keine Relativbewegung auf.

Gemäß dem Zweiten Newtonschen Gesetz ist das Produkt aus Masse   und Beschleunigung   im Inertialsystem gleich der äußeren Kraft   :

 

Möchte man eine analoge Gleichung in einem rotierenden Bezugssystem aufstellen, müssen die Bewegungsgrößen im Inertialsystem durch Größen, wie sie im rotierenden Bezugssystem   zu beobachten sind, ausgedrückt werden. Diese sind der Ortsvektor  , die Relativgeschwindigkeit   und die Relativbeschleunigung  . Die Geschwindigkeit   im Inertialsystem setzt sich aus der Relativgeschwindigkeit und der Umlaufgeschwindigkeit   aus der Rotationsbewegung zusammen. Dies ergibt sich aus der zeitlichen Ableitung des Ortsvektors  , daher gilt:

 

Da allgemein für die vollständige Ableitung eines Vektors   in K' gilt (Herleitung im Artikel Beschleunigtes Bezugssystem):

 ,

ergibt sich die Beschleunigung   im Inertialsystem in gleicher Weise als zeitliche Ableitung der Geschwindigkeit  .

 

Die Terme über den geschweiften Klammern sind die Ableitungen der beiden Summanden Relativgeschwindigkeit und Umlaufgeschwindigkeit. Ausmultiplizieren, Zusammenfassen und Auflösen nach der Relativbeschleunigung im rotierenden System   ergibt:

 

Multipliziert man die Gleichung mit der Masse und setzt gemäß dem zweiten Newtonschen Gesetz   gleich der äußeren Kraft  , erhält man die Bewegungsgleichung im rotierenden Bezugssystem:[9]

 

In dieser Gleichung finden sich die äußere Kraft, die Zentrifugalkraft und als letzter Term die Corioliskraft   wieder:

 

Fasst man die äußere Kraft und die Trägheitskräfte zu der im rotierenden Bezugssystem wirksamen Kraft   zusammen, sind in der Bewegungsgleichung formal äußere Kraft und Trägheitskräfte nicht mehr unterscheidbar:

 

Herleitung mit dem Lagrange-FormalismusBearbeiten

Im Lagrange-Formalismus ist die Lagrangefunktion   die Differenz aus kinetischer Energie und potentieller Energie. Unter Vernachlässigung eines Potentials ist

 

Nach den Euler-Lagrange-Gleichungen ist

 

Da die Euler-Lagrange-Gleichungen invariant unter einer Koordinatentransformation sind, ist irrelevant, ob nach den Größen im bewegten Bezugssystem   oder nach den Größen im Inertialsystem   abgeleitet wird. Es folgt also im bewegten Bezugssystem für die beiden Terme

 

und

 

In die Euler-Lagrange-Gleichung eingesetzt und umgestellt nach   ist

 

die Auflistung aller Kräfte im rotierenden Bezugssystem, die zusätzlich zu den durch das Potential bereits im Inertialsystem bewirkten Kräften auftreten.[10]

Wie in der kinematischen Herleitung ist der erste Term die Eulerkraft, der zweite die Zentrifugalkraft und der letzte Term die Corioliskraft,  . Die Gleichung zeigt, dass die Eulerkraft und die Zentrifugalkraft im rotierenden System nur vom Ort des Körpers abhängen, der durch den Ortsvektor   angegeben wird, gleich ob der Körper ruht oder sich bewegt. Die Corioliskraft hingegen wirkt nur auf sich bewegende Körper (Geschwindigkeitsvektor  ) und ist vom Ort unabhängig, die Ablenkung erfolgt auf jedem Ort des rotierenden Systems in gleicher Weise.

In der physikalischen Interpretation ist die Eulerkraft diejenige, die einen frei beweglichen, aber ruhenden Körper an seinem Ort zu halten versucht, wohingegen die Zentrifugalkraft ihn von seinem Ort zu entfernen versucht. Die Corioliskraft versucht einen bewegten Körper zu einem bestimmten Ort zurückzuführen.

Da die Corioliskraft die Bedingung für actio und reactio nicht erfüllt und nur im rotierenden Bezugssystem angenommen werden muss, wird sie als eine Trägheitskraft bezeichnet. Formal gilt die Newtonsche Bewegungsgleichung   also auch im rotierenden Bezugssystem, wenn Scheinkräfte berücksichtigt werden. Im Gegensatz zur Zentrifugalkraft besteht die Wirkung die Corioliskraft dahingehend, dass der bewegte Körper tendenziell zum Ausgangspunkt der Bewegung zurückgebracht wird.[11]

Da die Corioliskraft immer senkrecht zur Bewegungsrichtung des Körpers steht, verrichtet sie an dem Körper keine Arbeit.[12]

SpezialfälleBearbeiten

Die folgenden Spezialfälle gehen von einer konstanten Winkelgeschwindigkeit ( ) aus. In der zuvor hergeleiteten Bewegungsgleichung müssen noch die äußere Kraft, die Zentrifugalkraft und die Corioliskraft berücksichtigt werden.

 

Trägheitskreis bei alleiniger Wirkung der CorioliskraftBearbeiten

 
Gleichgewicht von Schwerebeschleunigung   und Zentrifugalbeschleunigung   auf einer rotierenden, parabolisch geformten Scheibe

Wenn die Zentrifugalkraft   dauernd durch eine äußere Kraft kompensiert wird, gilt:

 

Steht die Geschwindigkeit   senkrecht auf der Drehachse, ergibt sich eine gleichförmige Kreisbewegung, entgegengesetzt zur Drehung des Bezugssystems und mit der doppelten Winkelgeschwindigkeit  . Die Coriolisbeschleunigung   ist gerade die zugehörige Zentripetalbeschleunigung. Der Radius   folgt aus der Gleichsetzung:

 

zu

 .

Besitzt die Geschwindigkeit   auch eine Komponente parallel zur Drehachse, bleibt diese unverändert. Die vorstehende Gleichung gilt dann für die Komponente senkrecht zur Drehachse. Es resultiert eine schraubenförmige Bewegung.

Die Kompensation der Zentrifugalkraft wird durch die Schwerkraft erreicht, wenn der Körper sich auf einem Paraboloid mit senkrecht ausgerichteter Achse bewegt. Sie ist auch näherungsweise auf der Erdoberfläche gegeben, weil diese durch die Abplattung der Erde eine Äquipotentialfläche für die Summe aus Gravitations- und Zentrifugalpotential bildet. Trägheitskreise treten daher bei Luft- und Meeresströmungen auf.

Demonstrationsexperiment
 
Objekt, das sich reibungsfrei über die Oberfläche eines Paraboloids bewegt. Blick von oben auf das Paraboloid.
links: Elliptische Bewegung von außen betrachtet. rechts: Kreisförmige Bewegung gegen den Drehsinn der Schale im rotierenden System.

Für eine Demonstration des Trägheitskreises stellt man eine gekrümmte Fläche in Form eines Rotationsparaboloids her, indem man in einer rotierenden Schale eine Flüssigkeit erstarren lässt.[13] Die Oberfläche ist dann die gesuchte Äquipotentialfläche für die Summe aus Gravitation und Zentrifugalpotential, wenn man die Schale mit der beim Erstarren gewählten Rotationsgeschwindigkeit rotieren lässt. Im ruhenden Bezugssystem beschreibt ein Körper auf dieser Fläche aufgrund der Schwerkraft eine Ellipse oder, wenn er anfangs in Ruhe war, eine harmonische Schwingung durch den Mittelpunkt.

Rotiert die Schale gerade mit der beim Erstarren herrschenden Winkelgeschwindigkeit, dann bleibt ein mitrotierender Körper an seinem Ort auf der Fläche, da im Bezugssystem der Schale die oberflächenparallele Komponente   der Zentrifugalbeschleunigung   die zum Zentrum wirkende Komponente der Schwerebeschleunigung   ausgleicht. Bewegt sich nun der Körper auf der rotierenden Schale, wird er einen Trägheitskreis („Inertial-Kreis“) beschreiben, der ausschließlich durch die Corioliskraft verursacht wird. Sein Umlaufsinn ist der Drehbewegung der Schale entgegengesetzt, und die Winkelgeschwindigkeit der Kreisbewegung ist doppelt so groß wie die des rotierenden Bezugssystems. Vom ruhenden Bezugssystem aus gesehen erscheint dieser Trägheitskreis wie die oben erwähnte elliptische Schwingung um den Mittelpunkt der Fläche.

Diese Demonstration funktioniert genauso, wenn die Schale gar nicht rotiert, sondern nur die Anfangsgeschwindigkeit des Körpers gleich Umlaufgeschwindigkeit bei der genannten Rotationsfrequenz ist.[14]

Körper frei von äußeren Kräften auf der DrehscheibeBearbeiten

Das Experiment entspricht dem oben dargestellten Einfachen Beispiel. Vom Mittelpunkt startet ein Körper mit der Geschwindigkeit   auf der Scheibe. Von der Scheibe soll er keine horizontalen Kräfte erfahren, etwa wie bei einem geworfenen Ball. Der Körper bewegt sich daher von außen betrachtet mit der konstanten (Horizontal-)Geschwindigkeit  . Die Relativgeschwindigkeit bezüglich der Scheibe ist dann die Differenz zwischen der Geschwindigkeit   und der Umlaufgeschwindigkeit der Scheibe am betreffenden Punkt  :

 .

Die beiden Terme auf der rechten Seite sind orthogonal, denn wegen des Starts am Mittelpunkt sind   und   parallel. Daher ist der erste die radiale Komponente der Relativgeschwindigkeit ( ), der zweite die tangentiale Komponente ( ):

 .

Die nach innen gerichtete Corioliskraft   auf Grund der tangentialen Geschwindigkeit   ist doppelt so groß wie die nach außen gerichtete Zentrifugalkraft.

 

Beide radial gerichteten Scheinkräfte addieren sich zur Kraft   zum Mittelpunkt:

 

Die Bewegungsgleichung im rotierenden Bezugssystem vereinfacht sich damit zu:

 

Der erste Term führt zu einer gleichförmigen Kreisbewegung im rotierenden Bezugssystem, da  genauso groß ist wie diejenige Kraft, die benötigt würde, wenn der Körper mit der Scheibe fest verbunden wäre. Der zweite Term ist die Corioliskraft auf Grund der radialen Geschwindigkeit deren Betrag konstant ist und mit dem Betrag der Geschwindigkeit im Inertialsystem übereinstimmt. Sie beinhaltet die Beschleunigung, die zur Steigerung der Umfangsgeschwindigkeit erforderlich ist. Die Überlagerung der Kreisbewegung mit einer konstanten Radiusvergrößerung ergibt eine Archimedische Spirale.

Da der Vektor der Winkelgeschwindigkeit senkrecht zur Scheibe steht, kann mit den Beträgen der Vektoren gerechnet werden. Die seitliche Abweichung   an der Stelle mit dem Radius   berechnet sich mit der Coriolisbeschleunigung   zu:

 .

Da sich der Körper auf der Scheibe nach der Zeit   im Abstand   vom Mittelpunkt befindet und sich die Scheibe um den Winkel   gedreht hat, ist die seitliche Abweichung somit gleich der dazu gehörenden Bogenlänge. Soll ein mit der Scheibe verbundener Punkt erreicht werden, muss also mit dem gleichen Winkel vorgehalten werden.

Unabhängig von der Zeit ist die geometrische Bahn gegeben in Polarkoordinaten:

  .

TeufelsradBearbeiten

Bei einer gleichförmigen Bewegung auf einer Drehscheibe ist die Relativbeschleunigung Null.

 .

Diese Gleichung beschreibt das „dynamische Gleichgewicht“ zwischen der äußeren Kraft und den beiden Trägheitskräften Zentrifugalkraft und Corioliskraft. Beim Versuch, sich radial auf das Zentrum der Scheibe zuzubewegen, stehen Zentrifugalkraft und Corioliskraft senkrecht aufeinander und könnten daher unterschieden werden. Neben dem Spaßfaktor werden so auch Erfahrungen mit der Trägheit vermittelt.

KoordinatensystemeBearbeiten

Die Coriolisbeschleunigung   erfährt ein Körper, der sich in einem rotierenden Bezugssystem bewegt. Dafür gilt allgemein die Formel:  . In einigen typischen Koordinatendarstellungen bei rotierenden Systemen stellen sich die Formeln so dar:

Zylinderkoordinaten Kugelkoordinaten geografische Koordinaten
     

Dabei ist

  •   die Winkelgeschwindigkeit des Bezugssystems und
  •   der Geschwindigkeitsvektor der Bewegung des Körpers, relativ zum rotierenden Bezugssystem, und dabei bezeichnen
    • bei den Zylinderkoordinaten der Index   die Komponente parallel zur Rotationsachse   und die Indizes   und   die radiale und tangentiale Komponente senkrecht zur Rotationsachse,
    • bei den Kugelkoordinaten der Index   den Abstand zum Ursprung und die Indizes   und   den Azimut- und Polarwinkel,
    • bei den geografischen Koordinaten der Index   den Abstand zur Kugeloberfläche und die Indizes   und   die geografische Breite und Länge.

Wenn die Bewegung in einer Ebene senkrecht zur Drehachse stattfindet, ist der Winkel zwischen dem Geschwindigkeitsvektor und dem Winkelgeschwindigkeitsvektor 90°. Anstatt einer Berechnung des Kreuzprodukts des Geschwindigkeits- und Winkelgeschwindigkeitsvektors kann zur Bestimmung der Stärke der Corioliskraft mit deren Beträgen gerechnet werden und es gilt:

 

Corioliskraft auf der ErdeBearbeiten

Bewegung auf der Erdoberfläche und CoriolisparameterBearbeiten

 
Aufteilung der Winkelgeschwindigkeit der Erde in Horizontal- und Vertikalkomponente auf der geographischen Breite  
 
Der Coriolisparameter auf der Erde in Abhängigkeit vom Breitengrad

Jedes Objekt, das sich auf der Erde bewegt, wird durch die Coriolisbeschleunigung abgelenkt, da die Erde ein rotierendes System darstellt. Ausgenommen sind lediglich Bewegungen parallel zur Erdachse, z. B. an den Polen die vertikalen Bewegungen nach oben oder nach unten, am Äquator die horizontalen Bewegungen genau nach Norden oder nach Süden. Die Beeinflussung der Bewegungsrichtung durch die Coriolisbeschleunigung kann man sich am leichtesten an einer kugelförmigen Erdfigur klarmachen; für das Studium von Bewegungsabläufen unter dem Einfluss der beteiligten Kräfte ist ein genaueres Modell der Erdform heranzuziehen (vgl. Didaktische Aspekte).

Für die Betrachtung von Bewegungen in beliebiger geographischer Breite   ist es sinnvoll, den Vektor der Winkelgeschwindigkeit der Erde   in eine horizontale Komponente in Süd-Nord-Richtung   und eine vertikale Komponente   zu zerlegen. Es gilt dann:

 
 

Das begleitende Dreibein erlaubt es, den ebenen Drehscheibenversuch auf jeden Punkt der dreidimensionalen Erde zu übertragen.

Zur Berechnung der Corioliskraft bei horizontalen Bewegungen ist es vorteilhaft, die für einen Ort in einer bestimmten geographischen Breite   konstanten Werte zu einem Coriolisparameter zusammenzufassen:

 

Die Erdrotation (eine Umdrehung in 23 Stunden 56 Minuten 4 Sekunden = 1 Sterntag = 86164 s) erfolgt mit einer konstanten Winkelgeschwindigkeit[15] von

 .

In mittleren nördlichen Breiten liegt der Coriolisparameter damit in der typischen Größenordnung von  .

Körper, die sich horizontal mit der Geschwindigkeit   bewegen – also parallel zur Oberfläche der Erde – werden durch die Coriolisbeschleunigung   seitlich und die Coriolisbeschleunigung   senkrecht zur Erdoberfläche abgelenkt:

  (Betrag:  )
 

Die vertikale Komponente ist am Äquator am größten, aber um Größenordnungen kleiner als die zu ihr parallele Schwerebeschleunigung. Die Schwerkraft wird bei Bewegung nach Westen mit technisch typischen Geschwindigkeiten (z. B. 100 km/h) nur einige Promille erhöht sie, bei Bewegung nach Osten erniedirigt. Die vertikale Komponente ist deshalb praktisch nur bei besonderen Bedingungen bemerkbar (siehe Eötvös-Effekt). In den Geowissenschaften wird sie fast durchgängig vernachlässigt, und der Begriff Corioliskraft bezeichnet ausschließlich die horizontale Komponente.

Die horizontale Corioliskraft ist am Äquator Null und wächst mit der geographischen Breite an.

Horizontale BewegungenBearbeiten

 
Corioliskraft bei Bewegungen relativ zur Erdoberfläche:
Eine Geschwindigkeit nach Osten führt auf der Nordhalbkugel zu einer Beschleunigung nach Süden, eine Geschwindigkeit   senkrecht nach oben zu einer Ablenkung nach Westen

Die horizontale Corioliskraft stellt die einzige kontinuierlich wirkende großräumig Kraft dar, die horizontal wirkt. Sie spielt daher in der großräumigen atmosphärischen und ozeanischen Zirkulation eine wichtige Rolle. Mit dem Coriolisparameter   hat die Coriolisbeschleunigung   bei Bewegungen mit der Geschwindigkeit   den Betrag:

 

Diese Beschleunigung führt auf der Nordhalbkugel zu einer Richtungsänderung der Bewegung nach rechts, auf der Südhalbkugel nach links. Sie verschwindet am Äquator und ist maximal an den Polen.

Teilt man die Geschwindigkeit   in Komponenten in Richtung Ost bzw. Nord auf, so ergeben die entsprechenden Komponenten der Coriolisbeschleunigung durch Ausführung des Kreuzprodukts in den Koordinatenrichtungen x=O, y=N zu:

 

Die Beschleunigungen, die sich bei einem Coriolisparameter von   ergeben, sind sehr gering. Selbst bei einem Geschütz, dessen Projektil eine horizontale Geschwindigkeit von 1000 m/s besitzt, ergibt sich:  . Bei einer Entfernung von 40 km errechnet sich mit den angenommenen Werten eine Abweichung von lediglich 80 m. Wesentlich größere Effekte treten bei meteorologischen Phänomenen auf, bei denen eine äußerst geringe Beschleunigung sehr lang andauert.

Bei Bewegungen in Drehrichtung der Erde, d. h. nach Osten, bewirkt der Einfluss der vertikalen Komponente   der Coriolisbeschleunigung theoretisch außerhalb der engeren Polargebiete eine leichte Anhebung, bei Bewegungen in die andere Himmelsrichtung eine leichte Absenkung; dieser Effekt wird als Eötvös-Effekt bezeichnet.[11]

 

Nord-Süd-gerichtete Bewegungen werden nicht vertikal beeinflusst. Dieser Effekt ist aber meist vernachlässigbar, da sich die gleichgerichtete Schwerebeschleunigung wesentlich stärker bemerkbar macht. Die Vertikalkomponente der Corioliskraft spielt in der Praxis nur als Korrekturglied bei Präzisionsmessungen des Erdschwerefeldes eine Rolle. Sie verschwindet an den Polen und ist maximal am Äquator. Sie macht z. B. ein Flugzeug, das dort mit einer Geschwindigkeit von ca. 1000 km/h nach Osten fliegt, um annähernd ein Tausendstel seines Gewichts leichter – fliegt es nach Westen, wird es entsprechend schwerer.

In den Geowissenschaften wird daher der Name „Corioliskraft“ oft allein für deren horizontale Komponenten gewählt. Für sie gilt, wie für das oben erläuterte Beispiel der horizontalen Drehscheibe, dass die Corioliskraft stets senkrecht zur Bewegungsrichtung wirkt und dass ihre Stärke nicht von der Bewegungsrichtung abhängt. Im Unterschied zu den Verhältnissen auf der Drehscheibe hat aber Zentrifugalkraft auf der Erdoberfläche keine horizontale Komponente (denn die vertikale, senkrechte oder lotrechte Richtung ist gerade durch die gemeinsame Wirkung von Gravitation und Zentrifugalkraft definiert) und kann horizontale Bewegungen daher nicht beeinflussen. Daher kann die horizontale Corioliskraft die Trägheitsbewegung zu einem Kreis verformen (siehe auch oben #Trägheitskreis bei alleiniger Wirkung der Corioliskraft).

Corioliskraft und Foucaultsches PendelBearbeiten

Die Corioliskraft bewirkt auf der Nordhalbkugel die Drehung des Schwingungsebene des Foucaultschen Pendels im Uhrzeigersinn, da das Pendel ständig nach rechts abgelenkt wird. Die geringfügigen Abweichungen der einzelnen Schwingungen addieren sich auf zu einer täglichen Gesamtabweichung von   für ein Foucault-Pendel in der geographischen Breite   , so dass bereits die Abweichung der Einzelschwingung einen experimentellen Beweis für die Rotation der Erde darstellt.[16] Am Pol dreht sich die Schwingungsebene pro Tag einmal um 360 Grad und nimmt mit dem Sinus der geografischen Breite zum Äquator hin auf Null ab. Auf der Südhalbkugel ändert sich das Vorzeichen des Sinus und das Pendel dreht sich gegen den Uhrzeigersinn. Allgemein gilt für die Zeit einer vollständige Drehung der Schwingungsebene:

 .

Corioliskraft und StrömungenBearbeiten

Einfluss der Corioliskraft auf die WasserströmungenBearbeiten
 
Beta-Effekt: Die Änderung der Corioliskraft mit der geographischen Breite bedingt eine leicht spiralförmige Erweiterung des Inertialkreises

Die Corioliskraft hat wesentlichen Einfluss auf die Richtungen der großräumigen Bewegungen in den Ozeanen, sowohl direkt als auch durch den Einfluss des ebenfalls corioliskraftgesteuerten Windes. Da die Corioliskraft von der Himmelsrichtung einer horizontalen Bewegung unabhängig ist, beschreibt eine Luft- oder Wassermasse, die sich im Bezugssystem der Erde mit der Geschwindigkeit   bewegt, ohne Einfluss anderer Kräfte „Trägheitskreise“ mit Radien von:

 

In mittleren Breiten mit Werten des Coriolisparameters von   und einer typischen Meeres-Strömungsgeschwindigkeit von   ergibt sich ein Radius von   Die Bewegung erfolgt auf der Nordhalbkugel im Uhrzeigersinn, auf der Südhalbkugel entgegen dem Uhrzeigersinn. Die Periode der Umlaufbewegung ist:

 

Bei 60 Grad geographischer Breite beträgt die Periode   rund 14 Stunden. An den Polen liegt das Minimum mit 11 Stunden 58 Minuten 2 Sekunden (die halbe siderische Tageslänge), während die Periode zum Äquator hin gegen unendlich geht, sodass in den inneren Tropen keine Trägheitskreise vorkommen. Die Corioliskraft bestimmt auch den Umlaufsinn der Gezeitenwelle im tiefen Ozean, was entlang einer Küste zu unterschiedlichen Hoch- und Niedrigwasserzeiten führt.[17]

 
Großräumige ozeanische Strömungen entstehen unter Beteiligung der Corioliskraft mit unterschiedlichem Drehsinn auf beiden Hemisphären

Wegen der Breitenabhängigkeit des Coriolisparameters sind die „Trägheitskreise“ keine Kreise im mathematischen Sinn, sondern nur in erster Näherung, da sie polseitig einen kleineren Radius haben als äquatorseitig. Daraus ergibt sich eine leichte Spiralform, als deren Resultat die bewegte Masse nicht genau zum Ausgangspunkt zurückgeführt, sondern etwas nach Westen versetzt wird; diese Modifikation der Trägheitskreise wird „Beta-Effekt“ genannt. Die Bewegung auf Trägheitskreisen konnte durch die Beobachtung der Strömungsversetzung von schwimmenden Bojen in der Ostsee verifiziert werden.[11] Wenn die Trägheitsbewegung als Rotation von einer großräumigen Meeresströmung als Translation überlagert wird, ergibt sich ein zykloidales Bewegungsmuster.[18]

An der Grenzfläche von Atmosphäre und Ozean tritt sowohl in der Luft wie auch im Wasser eine turbulente Grenzschicht auf. Im Ozean sorgt die turbulente Grenzschicht in ihrer gesamten Ausdehnung für eine Durchmischung des Mediums. An der Grenzschicht übt ein Wind mit vorherrschender Richtung durch Reibung eine bestimmte Schubspannung aus, die eine Wasserströmung in gleicher Richtung in Gang setzt (Ekman-Transport). Diese wird jedoch durch die Corioliskraft auf der Nordhemisphäre nach rechts, auf der Südhemisphäre nach links abgelenkt. Eine Folge dieser Ablenkung ist das sogenannte „Ekman pumping“, das beispielsweise im zentralen und östlichen Pazifik zu beobachten ist.[19] Das Oberflächenwasser, das im Bereich konstanter Passatwinde aus östlichen Richtungen nach Westen getrieben wird, wird in Äquatornähe auf der Nordhemisphäre nach rechts, auf der Südhemisphäre nach links abgelenkt; diese Divergenz wird durch aufquellendes kühleres Tiefenwasser ausgeglichen, so dass sich ein äquatorparalleler Streifen von kühlerer Wassertemperatur zeigt.[18][20]

 
Inertialkreise behindern die horizontale Wasserbewegung, die durch den Aufstieg des Objekts verursacht wird, wenn sich das System in Rotation befindet.

Die derart erzeugte Strömung des Oberflächenwassers wird zusätzlich durch die darunter liegende Wasserschicht gebremst, wobei sich die Geschwindigkeit wie auch die von ihr abhängende Corioliskraft vermindern. Dieser Bremseffekt pflanzt sich so weit bis zu einer bestimmten Tiefe (Ekman-Tiefe) nach unten fort, bis die Strömung völlig abgebremst ist. Bis dorthin wirkt ebenfalls – zunehmend abgeschwächt – die Corioliskraft, so dass sich insgesamt eine spiralartige Struktur ausbildet (Korkenzieherströmung). Auch die großräumigen Bewegungen im Ozean (Sverdrup-Relation) werden wesentlich durch die Corioliskraft beeinflusst.

Allgemein wird der Einfluss der Corioliskraft auf bestimmte Bewegungen im Meer und in der Atmosphäre durch die dimensionslose Rossby-Zahl charakterisiert. Je kleiner diese ist, umso stärker ist die Bewegung durch Corioliskraft geprägt.

Die Drehrichtung kleinräumiger Wasserströmungen wie zum Beispiel des Strudels einer ablaufenden Badewanne werden entgegen einer verbreiteten Behauptung nicht durch die Corioliskraft bestimmt.[21][22][23]

Die Wirkung der Corioliskraft wird auch durch Experimente in kleinem Maßstab demonstriert, die Geoffrey Ingram Taylor 1921 erstmals publizierte. Die Verteilung einer kleinen Menge einer Flüssigkeit in einer anderen, mit der sie vollständig mischbar ist, von der sie sie aber durch bestimmte Parameter unterscheidet, kann unterdrückt werden, wenn sich die andere Flüssigkeit in einer Rotationsbewegung befindet. So bildet zugefügte Tinte in einem rotierenden Wasserbehälter eine säulenartige Struktur aus („Taylor-Säule“), die längere Zeit bestehen bleibt. Der Grund liegt darin, dass sich die diffundierenden Teilchen in Inertialkreisen gegensinnig zur Behälterrotation drehen.[24]

Ein Tennisball, der in einem rotierenden Wasserbehälter freigesetzt wird, steigt mit geringerer Geschwindigkeit auf als in einem nicht rotierendem, da das beim Aufsteigen horizontal unten hinzuströmende bzw. oben verdrängte Wasser durch Bildung von Inertialkreisen in seiner Bewegung behindert wird. Durch diese Experimente wird deutlich, dass die Tendenz der Corioliskraft darin liegt, die bewegten Teilchen wieder zum Anfangspunkt zurückzubringen.[24]

Einfluss der Corioliskraft auf die atmosphärische ZirkulationBearbeiten
 
Geostrophischer Wind durch Zusammenwirken von Gradientkraft   und Corioliskraft  [25][26]
 
Ageostrophischer Wind durch Zusammenwirken von Gradientkraft  , Corioliskraft   und Reibungskraft  [25][27]

Luftströmungen in der Erdatmosphäre sind im Allgemeinen keine Inertialbewegungen, sondern werden sowohl kleinräumig als auch großräumig durch Druckunterschiede hervorgerufen, die Folge örtlich oder regional unterschiedlicher Einstrahlung sind. Zwischen den Gebieten mit hohem und niedrigen Luftdruck wirkt eine Gradientkraft, die den Druckausgleich herbeiführen kann.

Bei großräumigen Luftströmungen über mehrere Hunderte oder Tausende von Kilometern spielt die Corioliskraft trotz ihrer geringen Größe eine wichtige Rolle, da sie die Luftmassen ablenkt und die direkte Luftbewegung vom Hoch- zum Tief verhindert. In der freien Atmosphäre kann die Corioliskraft die horizontale Komponente der Gradientkraft völlig kompensieren, der Wind wird dadurch zu einer isobarenparallelen Strömung abgelenkt, dem geostrophischen Wind, bei dem sich die zum Tief gerichtete Gradientkraft und die zum Hoch gerichtete Corioliskraft entgegengesetzt die Waage halten. Der Druckausgleich wird dadurch verhindert, und die Druckgebiete bleiben für einige Tage oder Wochen stabil. Ein eindrucksvolles Beispiel geostrophischer Winde stellen die Jetstreams in einigen Kilometern Höhe dar.

In der bodennahen atmosphärischen Grundschicht wirkt jedoch eine beträchtliche Reibungskraft auf die Luftströmung ein, ihr Vektor ist dem Strömungsvektor entgegengerichtet. Diese Reibung, deren Wirkung sich vertikal bis in einige Höhe fortpflanzt, verlangsamt die Strömung und vermindert damit die Größe der Corioliskraft. Für die Strömung ist nunmehr einerseits die ins Tief gerichtete Gradientkraft, andererseits die ins Hoch gerichtete Kraftkomponente, die sich aus der vektoriellen Addition von Reibungskraft und Corioliskraft ergibt, bestimmend. Die ageostrophisch genannte Strömung (Reibungswind) verläuft infolgedessen nicht mehr isobarenparallel, sondern quer zu den Isobaren vom Hoch- ins Tiefdruckgebiet hinein, wie man es auf Bodenwetterkarten erkennen kann.[28]

Mit zunehmender Höhe vermindert sich die Wirkung der Bodenreibung, und der Einfluss der Corioliskraft wird stärker: der Wind nimmt zu und die Windrichtung dreht – auf der Nordhemisphäre – nach rechts, bis in größerer Höhe der Wind einen geostrophischen Charakter angenommen hat. Zwischen Boden und Höhe kommt es dadurch zu einer Windscherung; durch Verbindung der Spitzen der Windvektoren in ansteigender Höhe erhält man eine spiralförmige Kurve (Ekman-Spirale).

Aus dem Zusammenwirken dieser Kräfte erklärt sich auch der Verlauf der Passatwinde, die aus dem Subtropischen Hochdruckgürtel zum äquatorialen Tiefdruckgebiet wehen. Die Corioliskraft lenkt diese Strömung auf beiden Hemisphären zu einer nach Westen gerichteten Ostströmung („Urpassat“) ab; durch den Reibungseinfluss wird daraus in der bodennahen Schicht der Nordhemisphäre der Nord-Ost-Passat und der Südhemisphäre der Süd-Ost-Passat. Der Nord-Ost-Passat ist demnach eine in Bodennähe zum Äquator hin ageostrophisch abgelenkte (geostrophische) Ost-West-Strömung und nicht – wie oft auf Skizzen dargestellt – eine nach Westen abgelenkte Nord-Süd-Strömung.

 
Auswirkung der Corioliskraft auf ein großskaliges Windsystem, hier Tiefdruckgebiet bei Island (Nordhalbkugel)
 
Entstehungsgebiete und Zugbahnen von tropischen Wirbelstürmen

Die Luft strömt auf der Nordhalbkugel ausnahmslos in Hochdruckgebieten im Uhrzeigersinn, in Tiefdruckgebieten gegen den Uhrzeigersinn. Auf der Südhalbkugel ist der Drehsinn umgekehrt. In Bodennähe verlässt die Luft das Hochdruckgebiet in Form eines rechts drehenden Wirbels, also im Uhrzeigersinn, und strömt gegen den Uhrzeigersinn in das Tiefdruckgebiet ein, wo diese Wirbelbewegung im Allgemeinen durch Wolkenbildung sichtbar wird. Da am Äquator der Vektor der Winkelgeschwindigkeit parallel zur Erdoberfläche liegt, ist dort die horizontale Komponente der Corioliskraft nicht wirksam, dynamische Hoch- und Tiefdruckgebiete können in Äquatornähe nicht existieren. Dies gilt insbesondere für die tropischen Wirbelstürme, die – obwohl am Äquator die thermischen Voraussetzungen vorliegen – erst in einer Distanz von mindestens circa fünf Breitengraden nach Nord bzw. Süd entstehen.

Strahlungsbedingt besteht auf der Erde von den Tropen zu den Polargebieten ein Temperatur- und ein Druckgefälle, wobei der horizontale Gradient jeweils in der oberen Troposphäre besonders ausgeprägt ist. Die Druckabnahme verläuft zum Pol hin nicht gleichmäßig, sondern konzentriert sich am oberen Rand der Troposphäre auf ein relativ schmales Band mit starkem Luftdruckabfall, der auf Höhenwetterkarten durch eine dichte Scharung der Isobaren sichtbar wird. In diesem Bereich stellt sich eine kräftige geostrophische Strömung ein, die sich regional zu den Jetstreams verstärkt. Diese Zone des starken Luftdruckgradienten verläuft nicht breitenkreisparallel, sondern als mehr oder weniger mäandrierende Struktur (Rossby-Wellen) mit Wellenlängen und Amplituden bis zu einigen Tausend Kilometern. Die Wellen bewegen sich, analog zur Richtung der geostrophischen Strömung, langsam von West nach Ost fort, können aber auch längere Zeit stationär bleiben. Durch Massenverlagerungen im Bereich der Rossby-Wellen entstehen auf der Polseite Tiefdruckgebiete (Zyklonen), auf der Äquatorseite Hochdruckgebiete (Antizyklonen), die meist bis zur Erdoberfläche herunterreichen. In diesen dynamischen, zirkulären Druckgebilden herrscht jeweils ein Gleichgewicht aus Gradient-, Zentrifugal- und Corioliskraft. Während die ersten beiden Kräfte für ein Druckgebiet jeweils als konstant angesehen werden können, ist die Corioliskraft in diesen räumlich ausgedehnten (≥ 1000 km) Druckgebieten auf der Polarseite größer als auf der Äquatorseite. Infolgedessen scheren die Zyklonen im statistischen Mittel tendenziell in polarer Richtung aus, die Antizyklonen in äquatorialer Richtung. Dadurch bildet sich nördlich der polaren Frontalzone die subpolare Tiefdruckzone und südlich davon der subtropische Hochdruckgürtel. Insoweit bestimmt die Corioliskraft nicht nur den Verlauf der atmosphärischen Luftströmungen, sondern auch die Verteilung der großräumigen Druckgebiete auf der Erde.[29][30]

Das geostrophische Gleichgewicht formt nur die großskaligen Wettermuster. Auf die Drehrichtung von kleinräumigen Tiefdruckgebieten, beispielsweise von Tornados, hat die Corioliskraft keinen wesentlichen Einfluss, da in diesen die anderen wirksamen Kräfte größenmäßig die Corioliskraft weit überwiegen.[31] Das wird schon daran deutlich, dass in Tornados auf der Nordhemisphäre auch Drehungen mit dem Uhrzeigersinn möglich sind.

Vertikale BewegungenBearbeiten

Wenn ein Körper aus der Höhe   im freien Fall herunterfällt, trifft er nicht genau auf dem Punkt auf, der sich vom Startpunkt aus in Lotrichtung unter ihm befindet, sondern er wird während der Fallzeit von der Coriolisbeschleunigung abgelenkt. Da die Vektoren senkrecht aufeinander stehen, ergibt das Kreuzprodukt in einem kartesischen Koordinatensystem mit x=Ost eine Ostablenkung:

 

Die Abweichung wird am Äquator ( ) maximal und ist an den Polen ( ) Null. Mit Einsetzung von   für den freien Fall erhält man eine Abweichung nach Osten   durch zweimalige Integration nach der Zeit  :

 
 
 

Mit der Fallzeit   erhält man:

 

Die Ostabweichung führt auf der Nordhalbkugel wiederum zu einer sehr geringen Südabweichung, die aber sowohl am Äquator als auch am Pol Null wird. Auf der Südhalbkugel wäre entsprechend eine Nordabweichung zu erwarten:

 

Das Gedankenexperiment von MersenneBearbeiten

 
Historische Karikatur zum Experiment von Mersenne

Eine alte Frage, über die schon im 17. Jhdt. Marin Mersenne spekulierte, ist die, wo eine senkrecht nach oben geschossene Kanonenkugel wieder am Boden ankommt – ohne Berücksichtigung von Luftbewegung und Luftwiderstand.

Die vertikale Geschwindigkeit   der Kanonenkugel folgt während des Flugs dem Geschwindigkeits-Zeit-Gesetz:

 

Eingesetzt in die Ostkomponente der Coriolisbeschleunigung entsteht durch die Integration der Beschleunigung beim Aufstieg eine westliche Geschwindigkeitskomponente (negative Ostkomponente), die im Umkehrpunkt ihr Maximum erreicht und beim Abstieg gleichermaßen wieder abnimmt. Unten erreicht sie wieder den Wert Null.

 ,

bzw. durch nochmalige Integration die Ablenkung:

 

Die Kugel hat nach der Zeit   den Boden wieder erreicht. Der gesamte Versatz nach Westen ergibt sich zu:

 .

Aufstieg und Abstieg tragen jeweils die Hälfte der gesamten Abweichung bei. Bei 50° geographischer Breite beträgt bei einer Anfangsgeschwindigkeit von 100 m/s (Steighöhe   ca. 500 m) die Westweichung theoretisch 65 cm. Am Äquator ist der Versatz am größten, zwischen Nord- und Südhalbkugel gibt es keinen Unterschied.

Zur Plausibilisierung dient das folgende Beispiel, das von der vereinfachten Vorstellung ausgeht, dass die horizontale Geschwindigkeit beibehalten wird. Da sich die Erde während der vertikalen Bewegung weiterdreht, ist das nur aber nur näherungsweise der Fall. Bei korrekter Rechnung ist die Abweichung um den Faktor 2/3 geringer.

In Äquatornähe wird neben einem Turm aus einer Kanone eine Kugel senkrecht nach oben abgefeuert, so dass sie die Höhe   der Turmspitze erreicht. Turm und Kanone sind mit der Erde fest verbunden und rotieren vom extraterrestrischen Inertialsystem (IS) aus gesehen mit der Winkelgeschwindigkeit  ; die Bahngeschwindigkeit an der Turmspitze ist jedoch um   größer als an der Erdoberfläche. Die abgefeuerte Kugel hat zu Beginn neben ihrer Vertikalgeschwindigkeit die Bahngeschwindigkeit der Erdoberfläche und möchte diese auf ihrem Weg beibehalten.

Da die Kugel während des gesamten Fluges eine geringere horizontale Geschwindigkeit, also eine geringere Ostkomponente als ein Punkt des Turms auf der gleichen Höhe hat, weicht sie gegenüber der Senkrechten immer stärker nach Westen ab bis zur Distanz   am Umkehrpunkt.

Auch während des anschließenden Freien Falls behält die Kugel weiterhin ihre horizontale Geschwindigkeit bei, sodass die Kugel gegenüber dem Turm zunehmend weiter westlich zurückbleibt. Am Fußpunkt angelangt stimmen die horizontalen Geschwindigkeiten aller Körper wieder überein. Da der Freie Fall genau so lange dauert wie der Aufstieg, beträgt die Gesamtabweichung  . Eine Kugel, die zum Vergleich während des Umkehrzeitpunkts an der Turmspitze freigesetzt wird, startet mit der horizontalen Geschwindigkeit der Turmspitze und behält diese bis zum Fußpunkt bei, so dass sie gegenüber dem Fußpunkt nach Osten abweicht (siehe „Vertikale Bewegungen“).[32] Abseits des Äquators muss   durch   ersetzt werden.

Synoptische Übersicht über die Ablenkungsrichtungen auf der ErdeBearbeiten

Die Ausdrücke für die Komponenten der Coriolisbeschleunigung gelten für den gesamten Erdkörper in gleicher Weise. Die Richtungsangaben sind vom Standort des Beobachters in seiner jeweiligen geographischen Breite   aus gesehen. Die mittlere Spalte beschreibt den Eötvös-Effekt.

Auf der Südhemisphäre ist der vertikale Vektor   dem entsprechenden Vektor der Nordhemisphäre   genau entgegengesetzt. Daraus resultiert für den Beobachter auf der Südhemisphäre bei horizontalen Bewegungen eine Abweichung nach links.

Beim senkrechten Wurf nach oben zeigt sich eine Ablenkung nach West. Beim Wurf mit anschließendem Freien Fall dürfen jedoch beide Ablenkungsrichtungen nicht nacheinander addiert werden; dieser Fall wird im Kapitel „Das Gedankenexperiment von Mersenne“ abgehandelt.

Ablenkung durch die Coriolisbeschleunigung auf der Erde in Abhängigkeit von der geographischen Breite
Geographische
Breite φ
horizontale Bewegung
(in jede Richtung)
horizontale Bewegung
(nach Ost / West)
vertikale Bewegung
(Freier Fall)
horizontale Ablenkung vertikale Ablenkung horizontale Ablenkung
Gleichung Richtung Gleichung Richtung Gleichung Richtung
Nordpol (90°N)   rechts
Nordhemisphäre
(0° < φ < 90°N)
  rechts   oben / unten   Ost
Äquator (0°)   oben / unten   Ost
Südhemisphäre
(0° < φ < 90°S)
  links   oben / unten   Ost
Südpol (90°S)   links

Didaktische AspekteBearbeiten

Bewegungen und Kräfte auf dem ErdkörperBearbeiten

 
Einfache, aber falsche Ableitung des Corioliseffekts aus den Bahngeschwindigkeiten der Erdoberfläche in unterschiedlichen Breiten
 
Reine Trägheitsbewegungen auf der Erde führen zum Bewegungsmuster von Inertialkreisen, bei denen die Masse zum Ausgangspunkt annähernd zurückgeführt wird

Als problematisch für das Verständnis hat sich der Versuch erwiesen, in der – im weiten Sinne – geowissenschaftlichen Ausbildung die Corioliskraft mit Hilfe des Modells zu erklären, mit dem George Hadley (1735) die Passatzirkulation begründete.[33] Der Kerngedanke ist, dass meridionale Luftströmungen ihre breitenkreisparallele Geschwindigkeitskomponente beibehalten und dadurch bei einer Bewegung, die zum Äquator gerichtet ist, gegenüber der Erdrotation zurückbleiben, woraus sich eine westwärts gerichtete Strömung ergibt bzw. eine ostwärts gerichtete bei polwärtigen Luftbewegungen. Dies beinhaltet eine Erklärung des Nord-Ost- bzw. Süd-Ost-Passats, aber auch der vorherrschenden Westwinde nördlich und südlich der subtropischen Hochdruckgürtel. Wegen dieser zumindest im statistischen Mittel richtigen Beschreibung der Strömungsrichtung wird das Hadley-Modell mitunter als gerechtfertigte Vereinfachung angesehen, auch wenn es nur die Ablenkung meridionaler, keinesfalls aber breitenkreisparalleler Bewegungen erklärt.[33]

Das Hadley-Modell überträgt das Konzept der Erhaltung der Bahngeschwindigkeit von der Ebene (vgl. „Coriolisbeschleunigung bei radialer Bewegung von der Drehachse weg“), wo es zutreffend ist, auf die konvexe Erdoberfläche zu einem Konzept der Erhaltung der breitenkreisparallelen Geschwindigkeit.[34] Es liefert zwar zunächst qualitativ die richtige Ablenkungsrichtung, führt jedoch zu falschen quantitativen Ergebnissen.[35] Schon auf relativ kleinen Distanzen weniger Breitengrade ergäben sich Windgeschwindigkeiten in völlig unrealistischer Größenordnung. Bereits zur Zeit Hadleys hatte man diesen Einwand mit der Zusatzhypothese einer bremsenden Wirkung der Reibung aufzufangen versucht, damit aber das Problem nur auf einen anderen unrealistischen Effekt verlagert: Die erforderliche Reibung hätte die Rotation der Erde im Laufe ihrer Geschichte viel stärker abbremsen müssen. Eine Luftströmung, die allein durch die unterschiedlichen Bahngeschwindigkeiten verursacht wäre, würde zu Inertialkreisen führen, die die Luft schon nach relativ kurzen Distanzen in ihrer Richtung umkehren würden. Das rein mechanisches Modell, dass die atmosphärische Zirkulation nur als Inertialbewegung erklärt, wird den tatsächlichen Verhältnissen nicht gerecht.[11] Flohn wies schon 1960 darauf hin, dass ein auf den Hadley-Vorstellungen aufgebautes Zirkulationsmodell mit den gemessenen meteorologischen Daten unvereinbar ist.[36]

 
Resultierende zwischen Gravitations- und Zentrifugalbeschleunigung auf der Erdoberfläche

Die Verhältnisse auf dem Erdkörper lassen sich hingegen in Analogie zum Demonstrationsexperiment auf der paraboloidischen Schale verdeutlichen. Der Erdkörper ist zwar im Gegensatz zur Schale konvex gekrümmt, hat aber im Laufe der Erdgeschichte durch Massenverlagerung angenähert die Form eines Rotationsellipsoids angenommen.[37] Die Schwerebeschleunigung an seiner Oberfläche resultiert aus dem Zusammenwirken von Gravitationsbeschleunigung   und Zentrifugalbeschleunigung  , deren jeweilige horizontale Komponenten   und   einander ausbalancieren.[38] Diese Kompensation der Zentrifugalbeschleunigung hat zur Folge, dass Bewegungsablenkungen durch die Erdrotation nur noch durch die Coriolisbeschleunigung bestimmt werden.

Die alleinige Wirkung der Corioliskraft, bei Abwesenheit anderer Einflüsse wie z. B. eines Druckgradienten, würde zu einer Bewegung in Inertialkreisen führen, bei denen eine anfangs äquatorwärtige Bewegung letztlich wieder in eine polwärtige umkehrt, wobei sich die Masse wieder dem Startpunkt der Bewegung nähert. Diese Bewegungsmuster finden sich in gleicher Weise im höherviskosen Wasser der Ozeane, wo sie leichter nachzuweisen sind.

Die Übertragung der Ergebnisse des Drehscheiben-Modells auf die Verhältnisse an der Erdoberfläche ist eingeschränkt möglich. Die Annahme, dass reibungsfreie Inertialströmungen nur durch die Corioliskraft verursacht sind, ist für die rotationsellipsoidische Erde näherungsweise berechtigt, nicht aber für die ebene Drehscheibe.[39]

Veranschaulichung an ModellenBearbeiten

Wegen der Bedeutung der Corioliskraft für die atmosphärische Zirkulation hat sie als Thema in den schulischen Unterricht Eingang gefunden,[40] wobei seine Bedeutung in den deutschen Lehrplänen je nach Bundesland sehr unterschiedlich ist.[41] In einer kritischen Untersuchung zu diesem Thema zeigte es sich, dass die Corioliskraft häufig sachlich falsch sowie methodisch-didaktisch ungeschickt unterrichtet wird.[40] In den Schulbüchern werde die Corioliskraft nur sehr oberflächlich behandelt, und vielen Lehrenden sei sie eine „black-box“. Bei einer Befragung nannten die Geographielehrer als Hauptprobleme bei der unterrichtlichen Umsetzung der Corioliskraft neben den (unzureichenden) Vorkenntnissen der Schüler die Dreidimensionalität, die Rotationsbewegung und die Überlagerung verschiedener Geschwindigkeiten.[42]

Zur Bewältigung der didaktischen Schwierigkeiten werden oft einfache veranschaulichende Experimente eingesetzt. Versuche mit einfachen Stiftlinien auf bewegten Pappscheiben oder einem rotierenden Globus, die sich in der Literatur und in einem Fall auch als obligatorischer Versuch in den Vorgaben eines Bundeslandes finden, sind jedoch abzulehnen, da die entstehenden gekrümmten Linien nur in jeweils einer Bewegungsrichtung der tatsächlichen Ablenkungsrichtung entsprechen.[43] Zur qualitativen Demonstration des Coriolis-Effekts werden neben einem Versuch mit Wassertropfen auf einem Globus auch Drehscheibenexperimente angesehen, die mit zwei Kameras jeweils für das ruhende und das rotierende System verfolgt werden.[44]

Corioliskraft in der TechnikBearbeiten

 
Prinzip eines Drehratensensors. Bei einer rotierten Stimmgabel bewegen sich die Zinken zusätzlich zur normalen Bewegung seitlich aneinander vorbei. Diese Bewegung beruht auf der Corioliskraft.

Corioliskräfte sind in der Technik dann von Bedeutung, wenn eine Drehbewegung von einer zweiten Bewegung „überlagert“ wird. Dies ist beispielsweise bei einem Roboter der Fall, der sich dreht und gleichzeitig seinen Greifarm ausfährt.

  • Wenn eine Last am Ausleger eines Krans nach innen oder außen fährt, während der Kran sich dreht, hängt sie aufgrund der Corioliskraft nicht senkrecht nach unten, sondern wird seitlich ausgelenkt. Wird die Last längs des Auslegers nach innen eingefahren, eilt sie der Drehung des Krans voraus.
  • In der Getriebetechnik (Koppelgetriebe) und in der Robotik spielen die Corioliskräfte eine Rolle, da hier gleichzeitige Bewegungen entlang mehrerer Freiheitsgrade erfolgen. Benutzt man zur Vereinfachung der Beschreibung rotierende Bezugssysteme, treten für Bewegungen in diesen Bezugssystemen Corioliskräfte auf.
  • Zur Messung des Massenstromes durchströmender Flüssigkeiten oder Gase verwendet man den Coriolis-Massendurchflussmesser. Das Messrohr wird in Schwingungen versetzt. Diese werden im Ein- und Auslauf gemessen und verglichen.[45] Bei der Corioliswaage wird vor allem Schüttgut durch die Messung der Änderung des benötigten Drehmoments eines Rotortellers vermessen.[46]
  • Bei Kreiselpumpen wird das Medium vom meist axial gelegenen Ansaugkanal durch das Pumpenrad in Rotation versetzt und durch die Zentrifugalkraft nach außen zum Ausgang geschleudert. Dabei übt das Medium Corioliskräfte auf das Pumpenrad aus, wodurch sich ein Bremsmoment für den Antrieb ergibt. Die effektiv aufgewendete Energie der Pumpe ist also etwa proportional zum radial verlaufenden Massenstrom, dem Radius des Pumpenrades und der Drehzahl (Verwirbelungen, Rückströmungen und Reibung außer Acht gelassen).
  • Einige Drehratensensoren zur Messung von Winkelgeschwindigkeiten nutzen die Corioliskraft in Form des sogenannten „Stimmgabelprinzips“,[47] das im nebenstehenden Bild erläutert wird. Aufgrund der Drehbewegung bewegen sich die Zinken der Stimmgabel nicht nur aufeinander zu, sondern sie führen zusätzlich seitliche Bewegungen zueinander aus, die durch die Corioliskraft verursacht werden. Die seitliche Auslenkung ist näherungsweise proportional zur Winkelgeschwindigkeit und kann beispielsweise durch eine kapazitive oder induktive Messung erfasst werden.[48]

ForschungsgeschichteBearbeiten

Seit dem 16. Jahrhundert wurde bei der Diskussion des kopernikanischen Weltbildes über die mögliche Ablenkung von geradlinigen Bewegungen auf der Erde spekuliert, wobei der Fokus der Diskussion zunächst auf der Ablenkung von vertikalen Bewegungen lag. Die Anti-Kopernikaner bestritten die Eigenrotation der Erde unter anderem mit dem Argument, dass ein Körper beim freien Fall auf einer rotierenden Erde gegen die Erdrotation zurückbleiben müsse, also nach Westen abgelenkt würde. Bei Experimenten konnten jedoch keine Ablenkungen festgestellt werden. Galileo Galilei erkannte, dass sich beim freien Fall eine Ostablenkung zeigen müsste.[14]

George Hadley konnte 1735 aus den je nach Breitenkreis unterschiedlichen Umdrehungsgeschwindigkeiten der Erde erstmals einen Grund für das konstante Vorkommen der subtropischen Passatwinde ableiten[49] Er gab keine Formel an, lieferte mit dem Modell der von der Erwärmung am Äquator getriebenen Zirkulation (Hadley-Zelle) aber auch eine erste Erklärung für großräumige horizontale Bewegungen auf der Erde.[11]

Leonhard Euler versuchte 1750, die Bewegungsgleichungen im rotierenden Bezugssystem mathematisch abzuleiten. Er führte aber die Zeitableitung der Geschwindigkeit falsch aus und erzielte damit ein Ergebnis, das zwar mit Hadleys Vorstellung übereinstimmte, aber gegenüber der korrekten Formel um den Faktor 2 zu klein ist.[11][50]

Pierre Simon de Laplace fand 1775 erstmals in den langen Formeln zur Bewegung auf einem rotierenden Himmelskörper den mathematisch korrekten Ausdruck für die ablenkende Kraft. Er ist damit der eigentliche „Entdecker“ des Coriolis-Effekts; jedoch ging er in der physikalischen Interpretation nicht über das Hadley-Modell hinaus.[51][11]

Pionierarbeiten zur experimentellen Bestätigung der Abweichung von der Lotrichtung lieferten Giovanni Battista Guglielmini (1791) in Bologna, Johann Friedrich Benzenberg (1802) in der Hamburger Michaeliskirche und in einem Bergbau-Schacht im Ruhrgebiet sowie Ferdinand Reich (1832), ebenfalls in einem Bergwerk in Freiberg in Sachsen.[52][53] Trotz starker Streuung stimmten die Resultate von Benzenbergs Versuchen im Mittel mit den Werten, die Laplace und Gauß berechnet hatten, in etwa überein.[11][54] Eine zusätzlich auftretende Südabweichung wurde bereits Mitte des 19. Jahrhunderts in verschiedenen Versuchen festgestellt.[55] Als erste zuverlässige experimentelle Bestätigung wurde die horizontale Ablenkung des Pendels durch Léon Foucault (1851) angesehen.

Gustave Coriolis analysierte 1835 die Bewegung von Maschinenteilen, die sich relativ zu einer Rotation bewegen. Dabei fand er durch Überlegungen wie im Abschnitt Coriolisbeschleunigung bei Kreisbewegung um die Drehachse herum, dass sich die gesamte Trägheitskraft aus der Zentrifugalkraft und einer weiteren, „zusammengesetzten“ Zentrifugalkraft, die eine Ablenkung bewirkt, zusammensetzt.[56][57] Letztere wurde erst im 20. Jahrhundert als „Corioliskraft“ bezeichnet. Siméon Denis Poisson berechnete daraufhin 1838 die Ablenkung von Artilleriegeschossen.

William Ferrel betonte 1858, dass im Gegensatz zu den Vorstellungen von George Hadley Luftströmungen zu jeder Himmelsrichtung auf der Nordhalbkugel nach rechts (Südhalbkugel nach links) abgelenkt werden. Ferrel erkannte als Erster die Bewegung auf Inertialkreisen und die Abhängigkeit ihrer Größe sowohl von der Geschwindigkeit der Bewegung als auch von der Breitenlage.[11]

Adolf Sprung begründete 1879 die Ablenkung von breitenkreisparallelen Bewegungen. Er übertrug die für eine rotierende ebene Scheibe geltenden mathematischen Ableitungen auf das System einer parabolisch geformten Fläche, bei welcher der Einfluss der Zentrifugalkraft kompensiert werden kann, sodass der Coriolis-Effekt einer isolierten Betrachtung zugänglich wird.[58] Persson vertritt die Ansicht, dass auch Newton diese Lösung mit seinen Möglichkeiten hätte finden können..[11]

In den 1850er Jahren rückte die Erde als rotierendes System ins Blickfeld der Forschung. Der Naturforscher Karl Ernst von Baer postulierte ein „allgemeines Gesetz“, dass die Täler der großen Tieflandsströme auf der Nordhemisphäre als Ergebnis der Corioliskraft mehrheitlich ein steileres rechtes und ein flacheres linkes Ufer besäßen.[59] Allerdings beschränkte er die Begründung ausdrücklich auf Flüsse in meridionaler Richtung; offensichtlich vorhandene Flussabschnitte mit steilerem linken Ufer erklärte er mit der Wirksamkeit anderer Faktoren. Diese Theorie war unter Geowissenschaftlern allerdings stark umstritten und wurde besonders in den 1920er Jahren in meteorologischen und geowissenschaftlichen Zeitschriften sehr kontrovers diskutiert.[60][61][62] Einerseits wurde die geringe Größe der Corioliskraft ins Feld geführt, andererseits auf die langen Zeiträume der Wirksamkeit verwiesen. Eine Ursache der Kontroverse lag auch in der unklaren begrifflichen Trennung zwischen Corioliskraft und „ablenkender Kraft der Erdrotation“, die von manchen Autoren weiter gefasst wurde. Ein statistisch valider Beleg für eine größere Häufigkeit rechtsseitig versteilter Täler auf der Nordhemisphäre wurde weder von Baer noch von anderen Autoren vorgelegt. Die Talasymmetrie wurde erst ab der Mitte des 20. Jahrhunderts systematisch geomorphologisch erforscht und als multikausal begriffen, wobei geologische, tektonische und klimatische Faktoren zusammenwirken. In neueren Werken zur Geomorphologie und Geologie spielt das „Baersche Gesetz“ keine Rolle mehr.

Mit dem Fließverhalten ist das Problem der Mäanderbildung von Flüssen eng verknüpft. Albert Einstein wies mit einer qualitativen Darlegung auf die Rolle der Corioliskraft, zusätzlich zur Zentrifugalkraft, bei der Bildung von Flussmäandern hin („Teetasseneffekt“), ohne das quantitative Verhältnis der beteiligten Kräfte zu diskutieren.[63][64]

Die Überlegung, dass die Bewegung von Eisenbahnen durch die Corioliskraft beeinflusst wird und bei Gleisen, die nur in einer Richtung befahren werden, zu verstärkter einseitiger Abnutzung führen könnte, stammt von Braschman (1861) und wurde lange Zeit in zahlreichen Lehrbüchern im Sinne einer gegebenen Tatsache dargestellt;[65] ein Beleg dafür durch eine technische Publikation ist nicht bekannt. Helmut Vogel weist darauf hin, dass kleinste Unregelmäßigkeiten der Gleisführung in der Größenordnung von 0,1 mm einen weit größeren Effekt auf die Asymmetrie der Abnutzung haben.[66]

Die Erfahrungen, die Fridtjof Nansen bei seiner Fram-Expedition (1893–1896) in der Arktis gemacht hatte, führte ihn zu der Vermutung, dass der Verlauf der driftenden Strömung von der Erdrotation beeinflusst wird. Die daraufhin von Vagn Walfrid Ekman ausgearbeiteten Gedanken führten zur Entdeckung der Ekman-Spirale.[18]

Die Bezeichnung „Corioliskraft“ ist erst seit den 1920er Jahren gebräuchlich, vorher war „ablenkende Kraft“ eine übliche Bezeichnung.[56]

Siehe auchBearbeiten

LiteraturBearbeiten

WeblinksBearbeiten

Commons: Coriolis force – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Corioliskraft – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks: Corioliskraft – Lern- und Lehrmaterialien

Einzelnachweise und AnmerkungenBearbeiten

  1. Corioliskraft, die. Duden online, abgerufen am 30. November 2013. Im Deutschen wird anstelle der letzten Silbe meist das erste i oder das zweite o betont.
  2. Im realen Experiment wird die Kugel von der Scheibe etwas in Drehrichtung mitgenommen. Siehe Coriolis- und Zentrifugalkraft im rotierenden Bezugssystem: Video von 3:00 bis 3:30 und ab 5:00. Dies lässt sich vermeiden, wenn die Kugel geworfen wird statt gerollt.
  3. Jürgen Dankert, Helga Dankert: Technische Mechanik. 6. Auflage. Vieweg-Teubner, 2011, ISBN 978-3-8348-1375-6. In der Technischen Mechanik wird die „Coriolisbeschleunigung“ als Teil der Beschleunigung im Inertialsystem gesehen, und zwar als diejenige Beschleunigung, die dem bewegten Körper senkrecht zu seiner Bewegungsrichtung erteilt werden muss, um seine Ablenkung gerade zu verhindern; dafür erhält sie das entgegengesetzte Vorzeichen.
  4. Wolfgang Demtröder: Experimentalphysik 1. 6. Auflage. Springer Spektrum, Berlin Heidelberg 2013, ISBN 978-3-642-25465-9, S. 83.
  5. Dieter Meschede: Gerthsen Physik. 25. Auflage. Springer, Heidelberg 2017, S. 43 ff.
  6. Richard Feynman u. a.: Vorlesungen über Physik. Bd. 1, Seite 19–2, die letzten beiden Sätze des Kapitels.
  7. Jürgen Dankert und Helga Dankert: Technische Mechanik. Springer, 6. Auflage, 2011, S. 497.
  8. Richard Feynman: The Feynman Lectures on Physics. 3. Auflage. Band 1. Basic Books, 2010, ISBN 978-0-465-02414-8, S. 19-15–19-16 (englisch).
  9. Brigitte Klose: Meteorologie. Springer, Berlin/Heidelberg 2008, S. 207.
  10. Lew Landau, Jewgeni Lifschitz: Mechanics. 3. Auflage. Butterworth Heinemann, 1976, ISBN 978-0-7506-2896-9, S. 126–129 (englisch).
  11. a b c d e f g h i j A. O. Persson: The Coriolis Effect: Four centuries of conflict between common sense and mathematics. In: History of Meteorology. Band 2, 2005.
  12. E. Becker: Technische Thermodynamik: Eine Einführung in die Thermo- und Gasdynamik. B. G. Teubner, 1985, ISBN 978-3-519-03065-2, S. 185.
  13. John Marshall: Inertial circles – visualizing the Coriolis force: GFD VI. 2003.
  14. a b Anders Persson: The Coriolis Effect – a conflict between common sense and mathematics. Norrköping 2005.
  15. Geringfügige Schwankungen und sehr langfristige Änderungen der Winkelgeschwindigkeit können für die meisten Fälle unberücksichtigt bleiben.
  16. Robert Wichard Pohl: Mechanik, Akustik und Wärmelehre. 17. Auflage, Springer-Verlag Berlin, Heidelberg, New York 1969, S. 94.
  17. Robert Stewart: Introduction to Physical Oceanography. Orange Grove Texts Plus, 2009, S. 311 (online [PDF; abgerufen am 19. Oktober 2019]).
  18. a b c Anders Persson: The Coriolis force and drifting icebergs. In: Weather. Vol. 56, 2001, S. 439–444.
  19. NASA: Ocean in motion: Ekman Transport.
  20. Schwedisches Meteorologisches und Hydrologisches Institut: Oberflächentemperaturen im zentralen Pazifik als Ergebnis eines durch die Corioliskraft erzeugten Auftriebs
  21. Christoph Drösser: Stimmt’s? Seltsamer Strudel. Auf: zeit.de. 12. Mai 1997, abgerufen am 14. Dezember 2014.
  22. Jearl Walker: Der fliegende Zirkus der Physik. Oldenbourg Wissenschaftsverlag, 2007, ISBN 978-3-486-58067-9 (eingeschränkte Vorschau in der Google-Buchsuche).
  23. Norbert Lossau: Fünf Minuten Physik: Badewannen und Tiefdruckgebiete. In: Die Welt. 6. Juni 2007.
  24. a b Anders Persson: The obstructive Coriolis force. In: Weather. Vol. 56, 2001, S. 204–209.
  25. a b Anders Persson: The Coriolis force and the nocturnal jet stream. In: Weather. Vol. 57, 2002, S. 28–33.
  26. Im Allgemeinen ist der Wind auch bei parallelen Isobaren nicht völlig geradlinig gerichtet, das gilt nur im statistischen Sinn, sondern er verläuft zykloidal, da sich der Translation eine Rotationsbewegung überlagert.
  27. Die Reibungskraft muss der Windrichtung nicht genau entgegen gerichtet sein auf Grund innerer Reibung in der Luft.
  28. Ernst Heyer: Witterung und Klima. 3. Auflage, BSB B.G.Teubner Verlagsgesellschaft Leipzig 1975, S. 130–131.
  29. Rossby-Wellen.
  30. Hermann Flohn: Zur Dididaktik der allgemeinen Zirkulation der Erde. In: Geographische Rundschau. Band 12, 1960, S. 129–142, 189–196.
  31. Brigitte Klose: Meteorologie. Springer, Berlin/Heidelberg 2008, S. 220.
  32. Anders Persson: Coriolis I. (Folie 20: Vergleich des Mersenne-Experiments mit dem Freien Fall mit Hilfe des Flächensatzes.)
  33. a b Anders Persson: Hadley’s Principle. Part 1. In: Weather. Band S. 335–338; Part 2. In: Weather. Band 64 2009, S. 44–48.
  34. Anders Persson: Is the Coriolis effect an ’optical illusion’? In: Quarterly Journal of the Royal Meteorological Society Band 141, 2014, S. 1957–1967.
  35. Anders Persson: How Do We Understand the Coriolis Force? In: Bulletin of the American Meteorological Society Band 79 (7), 1998, S. 1373–1385; hier S. 1376.
  36. Hermann Flohn: Zur Dididaktik der allgemeinen Zirkulation der Erde. In: Geographische Rundschau. Band 12, 1960, S. 129–142, 189–196.
  37. John Marshall, R. Alan Plumb: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. 2007, S. 101.
  38. Anders Persson: The Coriolis force on the physical earth. In: Weather. Vol. 55, 2000, S. 234–239.
  39. Anders Persson: Is the Coriolis effect an ’optical illusion’? In: Quarterly Journal of the Royal Meteorological Society Band 141, 2014, S. 1957–1967, hier S. 1963.
  40. a b Matthias Stober: Rahmenkriterien für die didaktische Umsetzbarkeit von Modellen und Modell-Experimenten im Geographieunterricht – Eine praxisorientierte und empirische Untersuchung am Beispiel der Corioliskraft. Dissertation Ludwig-Maximilians-Universität München 2012, S. I–II.
  41. Matthias Stober: Rahmenkriterien für die didaktische Umsetzbarkeit von Modellen … München 2012, S. 42.
  42. Matthias Stober: Rahmenkriterien für die didaktische Umsetzbarkeit von Modellen … München 2012, S. 115–116.
  43. Matthias Stober: Rahmenkriterien für die didaktische Umsetzbarkeit von Modellen … München 2012, S. 49–55.
  44. Matthias Stober: Rahmenkriterien für die didaktische Umsetzbarkeit von Modellen …. München 2012, S. 56–58, S. 61–64.
  45. Roland Steffen: Industrielle Durchflussmessung: Coriolis-Kraft-Durchflussmessung. 2004.
  46. Klaus-Dieter Sommer: Moderne Verfahren zur Messung von Kraft, Masse und daraus abgeleiteten Größen. Universität Erlangen 2008 (mit Gleichungen und Gerätekonstruktion).
  47. MEMS-Sensoren im Überblick, Automobil-Elektronik. (Memento vom 23. Mai 2013 im Internet Archive). (PDF; 2,8 MB), April 2007.
  48. Detlef Billep: Modellierung und Simulation eines mikromechanischen Drehratensensors. (PDF; 4,6 MB), Dissertation.
  49. George Hadley: Concerning the cause of the general trade-winds. In: Philosophical Transactions of the Royal Society of London. Band 39, Nr. 437, 1735, S. 58−62 (online [abgerufen am 28. September 2020]).
  50. Giulio Maltese: On the relativity of motion in Leonhard Euler’s science. In: Archive for history of exact sciences. Band 54 (Januar 2000), S. 319–348, hier S. 343.
  51. P. S. Laplace: Recherches sur plusieuers points du Système du Monde. In: Mém. Acad. roy.des Sciences. 88, 1775, S. 75–182. Zitiert in David Edgar Cartwright: Tides: A Scientific History. Cambridge 1999, eingeschränkte Vorschau in der Google-Buchsuche.
  52. Johann Friedrich Benzenberg: Versuche über das Gesetz des Falles, über den Widerstand der Luft und über die Umdrehung der Erde, nebst der Geschichte aller früheren Versuche von Galiläi bis auf Guglielmi. Dortmund 1804, 2. Auflage, Hamburg 1824.
  53. Ferdinand Reich: Fallversuche über die Umdrehung der Erde: angestellt in dem Brüderschachte bei Freiberge. Freiberg 1832.
  54. Jürgen Teichmann: Wandel des Weltbildes (= Kulturgeschichte der Naturwissenschaften und Technik, hrsg. vom Deutschen Museum München). 2. Auflage. Wissenschaftliche Buchgesellschaft, Darmstadt 1983, S. 157–159.
  55. Darstellung von Rundells Experiment, Mechanics Magazine, Mai 1849, sowie ein Brief von Oersted an Herschel in den Reports der British Association for the Advancement of Science, 1846.
  56. a b Anders Persson: The Coriolis force according to Coriolis. In: Weather. Vol. 56, 2001, S. 439–444.
  57. G. G. Coriolis: Memoire sur les équations du mouvement relatif des systèmes de corps. In: Journal de l’École polytechnique. 15, 1835, S. 142–154. In dieser Veröffentlichung leitet er durch Koordinatentransformation auch die allgemeine Formel her, wobei er die Vorarbeit von Laplace (1775) nicht erwähnt.
  58. Adolf Sprung: Studien über den Wind und seine Beziehungen zum Luftdruck. I. Zur Mechanik der Luftbewegungen. In: Archiv der Deutschen Seewarte Band 2, 1879, S. 1–28.
  59. Karl Ernst von Baer: Über ein allgemeines Gesetz in der Gestaltung der Flussbetten. In: Kaspische Studien. 1860, VIII, S. 1–6.
  60. Julius Bartels: Nochmals das Baersche Gesetz. In: Petermanns Geographische Mitteilungen. 68, Jg. 1922, S. 146–147.
  61. Adolf Schmidt: Die ablenkende Kraft der Erddrehung. In: Petermanns Geographische Mitteilungen. 68, Jg. 1922, S. 144–146.
  62. Karl-Heinz Bernhardt: Teetassen-Zyklonen und Flußmäander – Einstein klassisch. (PDF), 2005, S. 81–95, hier S. 87–88.
  63. Albert Einstein: Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. In: Die Naturwissenschaften. Band 14, 1926, S. 223–224; Handschriftlicher Entwurf der Veröffentlichung.
  64. Einstein referierte in Die Naturwissenschaften 1926 (S. 223) die von Geographen vertretene Ansicht einer stärkeren Erosionskraft auf der rechten Flussseite, ohne diese herzuleiten oder sich in die Diskussion darüber einzuschalten.
  65. Nikolai Braschman: Note concernant la pression des wagons sur les rails droits et des courants d’eau suer la rive droite du mouvement en vertu de la rotation de la terre. In: Comptes rendues. Band 53, 1861, S. 1068–1071.
  66. Helmut Vogel: Probleme aus der Physik. Aufgaben und Lösungen zur 17. Auflage von Gerthsen/Vogel Physik. Springer, Berlin 1993, ISBN 3-540-56632-5, S. 40.