Hauptmenü öffnen

Wikipedia β

Rotation eines Vektorfeldes

Differentialoperator auf ein Vektorfeld

Als Rotation oder Rotor[1][2] bezeichnet man in der Vektoranalysis, einem Teilgebiet der Mathematik, einen bestimmten Differentialoperator, der einem Vektorfeld im dreidimensionalen euklidischen Raum mit Hilfe der Differentiation ein neues Vektorfeld zuordnet.

Die Rotation eines Strömungsfeldes gibt für jeden Ort das Doppelte der Winkelgeschwindigkeit an, mit der sich ein mitschwimmender Körper dreht („rotiert“). Dieser Zusammenhang ist namensgebend.

Das Geschwindigkeitsfeld einer rotierenden Scheibe besitzt eine konstante Rotation parallel zur Drehachse

Es muss sich aber nicht immer um ein Geschwindigkeitsfeld und eine Drehbewegung handeln; beispielsweise betrifft das Induktionsgesetz die Rotation des elektrischen Feldes.

Ein Vektorfeld, dessen Rotation in einem Gebiet überall gleich null ist, nennt man wirbelfrei oder, insbesondere bei Kraftfeldern, konservativ. Ist das Gebiet einfach zusammenhängend, so ist das Vektorfeld genau dann der Gradient einer Funktion, wenn die Rotation des Vektorfeldes im betrachteten Gebiet gleich null ist.

Die Divergenz der Rotation eines Vektorfeldes ist gleich null. Umgekehrt ist in einfach zusammenhängenden Gebieten ein Feld, dessen Divergenz gleich null ist, die Rotation eines anderen Vektorfeldes.

Beispiele:

  • Das Vektorfeld, das an jedem Ort die Windrichtung und -geschwindigkeit eines Wirbelsturms angibt, hat in der Umgebung des Auges eine von null verschiedene Rotation.
  • Das Vektorfeld das an jedem Punkt einer rotierenden Scheibe die Geschwindigkeit angibt, hat an jedem Punkt dieselbe von null verschiedene Rotation. Die Rotation beträgt das Zweifache der Winkelgeschwindigkeit,
  • Das Kraftfeld, das an jedem Punkt die Gravitationskraft der Sonne auf ein Testteilchen angibt, ist wirbelfrei. Das Kraftfeld ist der negative Gradient der potentiellen Energie des Teilchens.

Inhaltsverzeichnis

Definition der Rotation in kartesischen KoordinatenBearbeiten

Seien   die kartesischen Koordinaten des dreidimensionalen euklidischen Raumes und  ,   und   die auf Einheitslänge normierten, zueinander senkrechten Basisvektoren, die an jedem Punkt in Richtung der zunehmenden Koordinaten zeigen.

Die Rotation eines dreidimensionalen, differenzierbaren Vektorfeldes

 

ist das dreidimensionale Vektorfeld

 

Als Merkregel kann man   als Determinante einer Matrix auffassen, deren erste Spalte die kartesischen Basisvektoren enthält, die zweite die partiellen Ableitungen nach den kartesischen Koordinaten und die dritte die zu differenzierenden Komponentenfunktionen

 

Allerdings sind hier die verschiedenen Spalten nicht Vektoren desselben Vektorraumes.

Gibt man die Vektoren als Spaltenvektoren ihrer kartesischen Komponenten an, dann ist   das Kreuzprodukt des Spaltenvektors der partiellen Ableitungen nach den kartesischen Koordinaten, des Nabla-Operators  , mit dem Spaltenvektor der kartesischen Komponentenfunktionen

 

Andere Koordinatendarstellungen der RotationBearbeiten

KugelkoordinatenBearbeiten

Schreibt man das Vektorfeld in Kugelkoordinaten   als Linearkombination

 

der auf Einheitslänge normierten Vektoren

 

die an jedem Punkt in Richtung zunehmender  -Koordinaten zeigen, so ist die Rotation

 

ZylinderkoordinatenBearbeiten

Gibt man das Vektorfeld in Zylinderkoordinaten   als Linearkombination

 

der Vektoren

 

an, die auf Einheitslänge normiert an jedem Punkt in Richtung zunehmender  -Koordinaten zeigen, so ist die Rotation

 

Koordinatenfreie Darstellung der Rotation als VolumenableitungBearbeiten

Mit Hilfe des klassischen Integralsatzes von Stokes kann die Rotation, ähnlich wie die Divergenz (Quellendichte), als Volumenableitung dargestellt werden. Diese Darstellung hat den Vorteil, dass sie koordinatenunabhängig ist. Aus diesem Grund wird die Rotation im Bereich der Ingenieurwissenschaften oftmals direkt so definiert.

Ist   ein Raumgebiet mit stückweise glattem Rand   und dem Volumen  , dann kann die Rotation des Vektorfelds   im Punkt   mittels der Volumenableitung durch

 

berechnet werden. Dabei bezeichnet   das äußere vektorielle Flächenelement von   wobei   der nach außen zeigende Normalenvektor und   das skalare Flächenelement ist. Zur Grenzwertbildung wird das Raumgebiet   auf den Punkt p zusammengezogen, sodass sein Inhalt   gegen null geht.[3]

Ersetzt man   durch eine Strömungsgeschwindigkeit, erscheint die Rotation als Wirbeldichte. Ähnlich gebildete Synonyme existieren auch für die Divergenz (Quellendichte) und den Gradienten (Kraftdichte). Die Koordinatendarstellungen des vorigen Abschnitts ergeben sich aus der Volumenableitung, wenn man das jeweilige Volumenelement als Raumgebiet   wählt.

AxialvektorfeldBearbeiten

Die Rotation eines Vektorfeldes ist ein Pseudovektorfeld. Ein Vektorfeld geht bei Spiegelung am Ursprung in sein negatives am gespiegelten Ort über, die Rotation des Vektorfeldes ändert bei dieser Spiegelung ihr Vorzeichen nicht,

 

Vektorfeld in zwei DimensionenBearbeiten

Ein Vektorfeld im zweidimensionalen, euklidischen Raum kann als Vektorfeld

 

in drei Dimensionen aufgefasst werden, das nicht von der dritten Koordinate abhängt und dessen dritte Komponente verschwindet. Seine Rotation ist kein Vektorfeld dieser Art, sondern hat eine dritte Komponente,

 

Definiert man in zwei Dimensionen die Rotation als den Differentialoperator

 

dann ist das Ergebnis eine skalare Funktion, nicht ein Vektorfeld.

Zusammenhang zur WinkelgeschwindigkeitBearbeiten

Wir betrachten einfachheitshalber die Drehung eines starren Körpers um die  -Achse mit konstanter Winkelgeschwindigkeit   Dabei wächst der Drehwinkel   gleichmäßig mit der Zeit an,   und jeder Punkt durchläuft eine Bahn

 

Die Geschwindigkeit beträgt

 

Das Geschwindigkeitsfeld einer starren Drehung um die  -Achse ist also, wie oben im Beispiel angegeben,

 

Seine Rotation ist die doppelte Winkelgeschwindigkeit

 

Veranschaulichung durch DrehmomentBearbeiten

In einem Flächenkraftdichte-Feld[4]  , das jedem Körperoberflächenelement mit dem Inhalt   unabhängig von seiner Ausrichtung die Kraft   einprägt, erfährt eine Kugel mit dem Radius   (und dem zugehörigen Volumeninhalt  ) das Drehmoment

 

Vorausgesetzt ist, dass   im Bereich der Kugel konstant ist. Die Gleichung folgt mit dem aus der koordinatenfreien Darstellung der Rotation unmittelbar folgenden Integralsatz   mit   und  

Zerlegung in quellen- und wirbelfreien TeilBearbeiten

Zweifach stetig differenzierbare Vektorfelder  , die mit ihren Ableitungen für große Abstände hinreichend rasch gegen null gehen, kann man eindeutig in einen wirbelfreien Teil   und einen quellenfreien Teil   zerlegen,

 

Dabei bezeichnen   und   den Divergenz- bzw. Gradient-Operator, wobei die Definition   die in der Physik übliche Konvention ist. Mathematisch ist:  

Diese Zerlegung ist Bestandteil des Helmholtz-Theorems.

RechenregelnBearbeiten

Die Rotation ist linear. Für alle Konstanten   und differenzierbare Vektorfelder   und   gilt

 

Die Rotation eines Vektorfeldes verschwindet genau dann, wenn es lokal ein Gradientenfeld ist. Die Divergenz eines Vektorfeldes verschwindet genau dann, wenn es lokal die Rotation eines anderen Feldes ist,

 

und die anderen Implikationen sind Spezialfälle des Poincaré-Lemmas.

Für differenzierbare Funktionen   und Vektorfelder   und   gelten die Produktregeln

 

Darin ist   der Nabla-Operator und in der letzten Formel bildet grad den Vektorgradient. Für die zweifache Anwendung der Rotation gilt

 

Für einen Vektor  , der von einem Skalar   abhängt, und dieser in 3D vom Ort, gilt die Kettenregel

 

Integralsatz von StokesBearbeiten

 
Fläche   mit Berandung  
Hauptartikel: Satz von Stokes

Das Integral über eine Fläche   über die Rotation eines Vektorfeldes   ist nach dem Satz von Stokes gleich dem Kurvenintegral über die Randkurve   über  

 

Durch das Doppelintegral wird links betont, dass man von einer zweidimensionalen Integration ausgeht. Auf der rechten Seite soll das Kreissymbol im Integralzeichen unterstreichen, dass es sich um ein Integral über einen geschlossenen Weg handelt. Die Orientierung entspricht dabei der Drei-Finger-Regel, siehe Abbildung rechts: die folgenden drei Vektoren, nämlich erstens der Vektor   in Richtung der Flächennormalen, zweitens der Vektor   in Tangentialrichtung der Kurve und drittens der vom Rand in die Fläche zeigenden Vektor, entsprechen Daumen, Zeigefinger und Mittelfinger der rechten Hand, das heißt, sie bilden ein Rechtssystem. Oft schreibt man   indem man mit dem Normalenvektor   die Richtung der Größe hervorhebt.

Rotation von Tensoren zweiter StufeBearbeiten

Tensoren zweiter Stufe werden mit dem dyadischen Produkt “ von Vektoren gebildet, auf die die Rotation angewendet werden kann. Auf diese Weise kann die Rotation auch auf Tensoren verallgemeinert werden. Sei

 

ein Tensor mit Spaltenvektoren   mit Komponenten Tij. In der Gleichung wurde die Einsteinsche Summenkonvention angewendet, der zufolge über in einem Produkt doppelt vorkommende Indizes, hier i und j, von eins bis drei zu summieren ist. Dann kann die Rotation des Tensors definiert werden als:

 

Der Index nach einem Komma ist die Kurzschreibweise für die Ableitung nach dieser Koordinate:

 

Mit dem Nabla-Operator schreibt sich die Rotation eines Tensors:

 

In der Literatur kommt jedoch auch die transponierte Version mit den Zeilenvektoren   vor

 

die sich also durch die Transposition des Argumentes von der hiesigen Definition unterscheidet.

Im Zusammenhang mit Tensoren sind Klammern ein wichtiges Hilfsmittel, um die Reihenfolge der Anwendung und die Argumente der verschiedenen Operatoren klarzustellen, was auf das Ergebnis einen entscheidenden Einfluss hat. Es ist beispielsweise

 

EigenschaftenBearbeiten

Wenn der Tensor symmetrisch ist, dann ist seine Rotation spurfrei:

 

denn Terme mit vertauschten Indizes i und j sind gleich groß, besitzen aber umgekehrtes Vorzeichen und heben sich daher in der Summe gegenseitig auf.

Die Produktregel führt im Produkt mit einem Skalar f, Vektoren   und dem Tensor   auf:

 

Bei der Verknüpfung der Rotation mit anderen Differentialoperatoren entstehen unter Beteiligung eines Tensors teilweise ähnliche Formeln wie sie aus der Vektoranalysis bekannt sind:

 

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. Wie kann man sich vom Rotor (Wirbel) eines Vektorfeldes und vom Vektorpotentiale eine Anschauung verschaffen?, Walter Rogowski, Archiv für Elektrotechnik
  2. Mathematik für Naturwissenschaftker und Ingenieure: Tensorrechnung, Hans Karl Iben
  3. Bronstein, Semendjajew, Musiol, Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch, Frankfurt, 8. Aufl. 2012, Abschn. 13.2, Räumliche Differentialoperatoren
  4. @1@2Vorlage:Toter Link/n.ethz.ch( Seite nicht mehr abrufbar, Suche in Webarchiven: Formelsammlung Mechanik)

LiteraturBearbeiten

WeblinksBearbeiten