Hauptmenü öffnen

Der geometrische Schwerpunkt oder Schwerpunkt einer geometrischen Figur (zum Beispiel Kreisbogen, Dreieck, Kegel) ist ein besonders ausgezeichneter Punkt, den man auch bei unsymmetrischen Figuren als Art Mittelpunkt interpretiert. Mathematisch entspricht dies der Mittelung aller Punkte innerhalb der Figur. Im Speziellen wird der geometrische Schwerpunkt von Linien auch Linienschwerpunkt, von Flächen Flächenschwerpunkt und von Körpern Volumenschwerpunkt genannt. Den Schwerpunkt kann man in einfachen Fällen durch geometrische Überlegungen erhalten, oder allgemein mit Mitteln der Mathematik durch Integration berechnen. Zur Beschreibung der Körper werden die Methoden der analytischen Geometrie verwendet. Der Schwerpunkt ist ein Gravizentrum.

Der geometrische Schwerpunkt entspricht dem Massenmittelpunkt eines physikalischen Körpers, der aus homogenem Material besteht, also überall die gleiche Dichte hat. Er lässt sich deshalb auch rein mechanisch durch Balancieren bestimmen. Diese Methode kann an Modellen angewandt werden, wenn es um geografische Mittelpunkte von Kontinenten oder Ländern geht (zum Beispiel Mittelpunkt Europas oder Mittelpunkt Deutschlands).

Geometrischer Schwerpunkt endlich vieler Punkte im reellen VektorraumBearbeiten

Sind in einem  -Vektorraum   für eine natürliche Zahl   paarweise verschiedene Punkte   gegeben, so ist deren geometrischer Schwerpunkt   definiert als

   .

In diesen Zusammenhang fällt der Begriff des Schwerpunkts eines  -dimensionalen Simplexes  . Hat ein solches Simplex die Eckpunkte  , so ist sein Schwerpunkt   nichts weiter als der geometrische Schwerpunkt seiner Eckpunkte, also:

   .

Der Schwerpunkt eines solchen Simplexes zeichnet sich also dadurch aus, dass seine baryzentrischen Koordinaten in Bezug auf das Simplex alle gleich, nämlich

 

sind.[1]

Bilden diese endlich vielen verschiedenen Punkte die Menge aller Eckpunkte einer geometrischen Figur im euklidischen Raum, so bezeichnet man den geometrischen Schwerpunkt all dieser auch als Eckenschwerpunkt der Figur.[2] Beispiele hierfür geben insbesondere die Strecke, das Dreieck und das Tetraeder. Für Vierecke gilt nach Pierre de Varignon (1654–1722), dass der Eckenschwerpunkt eines Vierecks zugleich der Mittelpunkt der beiden Mittellinien, also der beiden Verbindungsstrecken gegenüberliegender Seitenmittelpunkte ist.[3][4]

Schwerpunkte von elementargeometrischen FigurenBearbeiten

Im Folgenden werden einige Schwerpunkte elementargeometrischer Linien, Flächen und Körper angegeben und teilweise durch geometrische Überlegungen begründet.

Für achsensymmetrische oder rotationssymmetrische Figuren vereinfacht sich die Angabe des Schwerpunkts dadurch, dass dieser stets auf der Symmetrieachse liegt. Bei Figuren mit mehreren Symmetrieachsen bzw. punktsymmetrischen Objekten, wie beispielsweise bei einem Quadrat oder einem Kreis, liegt der Schwerpunkt im Schnittpunkt der Symmetrieachsen (Mittelpunkt) der Figur.

LinienBearbeiten

StreckeBearbeiten

Der geometrische Schwerpunkt einer Strecke liegt in deren Mitte, ist also identisch mit deren Mittelpunkt.

KreisbogenBearbeiten

 
Schwerpunkt eines Kreisbogens

Ist der Ausschnitt des Kreises so gedreht und verschoben, dass die y-Achse des kartesischen Koordinatensystems eine Symmetrieachse des Kreisbogens ist und der Mittelpunkt des Kreises im Koordinatenursprung liegt (siehe Bild), dann lässt sich der Schwerpunkt durch

 

berechnen.[5] Hierbei ist   der Radius des Kreises,   die Länge des Kreisbogens und   die Sehnenlänge des Kreisbogens.

 

Für   versagt die Formel. Mit   kann der Schwerpunkt auch für sehr kleine Winkel berechnet werden.

Musste der Kreis zu anfangs verschoben oder gedreht werden, dann muss zur Vervollständigung der Rechnung der berechnete Schwerpunkt entsprechend wieder zurückverschoben oder gedreht werden.

Flacher BogenBearbeiten

Um den Schwerpunkt eines flachen Bogens näherungsweise zu berechnen, muss dieser im kartesischen Koordinatensystem so verschoben werden, dass der Mittelpunkt der Verbindungslinie der beiden Endpunkte im Koordinatenursprung liegt. Dann befindet sich der Schwerpunkt für   in guter Näherung etwas unterhalb von

 .

Bei   (Halbkreis) liegt der Schwerpunkt exakt bei  . Die prozentuale Abweichung steigt in etwa proportional mit h und beträgt bei   ungefähr 4,7 %. Daraus folgt der Ausdruck  , der den Schwerpunkt im Bereich von   mit einer Genauigkeit von besser als 5 Promille angibt. Die exakte Lage des Linienschwerpunktes   im gesamten Bereich von   findet man mittels Einsetzen von   in die Formel für den auf den Kreismittelpunkt bezogenen Schwerpunkt   (siehe Oberabschnitt Kreisbogen):

 .

Interessanterweise zeigt   ein Maximum etwas größer als   bei  . War zu Beginn eine Verschiebung oder Drehung notwendig, so muss der Schwerpunkt wieder entsprechend zurückverschoben werden.

Ebene FlächenBearbeiten

Bei ebenen Flächen lässt sich der Schwerpunkt allgemein dadurch ermitteln, dass man die ausgeschnittene Fläche an einem Punkt aufhängt und die Lotgerade, eine so genannte Schwerelinie einzeichnet. Der Schnittpunkt zweier Schwerelinien ist der Schwerpunkt. Alle weiteren Schwerelinien schneiden sich ebenfalls in diesem Schwerpunkt.
Bei Vielecken (insbesondere Dreiecken und Vierecken) unterscheidet man, je nach der Beschaffenheit der ebenen Fläche, zwischen drei verschiedenen Schwerpunkten:

Flächenschwerpunkt, Kantenschwerpunkt und Eckenschwerpunkt

wobei allerdings die beiden letztgenannten Schwerpunkte kaum eine praktische Anwendung haben und deshalb mehr oder weniger von nur akademischem Interesse sind.
Eine homogene Fläche von beliebiger, aber konstanter Dicke hat (genau gesagt) einen Flächenschwerpunkt; meist begnügt man sich jedoch mit der Bezeichnung Schwerpunkt.
Bei einem Vieleck, das nur aus seinen Umrandungen besteht (z. B. aus einzelnen dünnen Stangen oder in Form eines entsprechend gebogenen Drahtes), ist dessen Schwerpunkt ein Kantenschwerpunkt
Bei einem (fiktiven) Modell, bei dem die Masse des Körpers (des Vielecks) lediglich in den Ecken konzentriert ist (z. B. in Form von gleichschweren Kugeln), spricht man von einem Eckenschwerpunkt.
Die Lage dieser drei Schwerpunkte ist bei Vielecken mit gleicher äußerer Form, aber der o. g. unterschiedlichen Beschaffenheit, in der Regel voneinander verschieden; ihre Ermittlung richtet sich nach dem Einzelfall.

DreieckBearbeiten

 
Flächenschwerpunkt S eines Dreiecks
 
 
 

Die Seitenhalbierenden eines Dreiecks sind Schwerelinien des Dreiecks. Sein Schwerpunkt (genauer: Flächenschwerpunkt) liegt im gemeinsamen Schnittpunkt der drei Seitenhalbierenden   und  . Er teilt diese im Verhältnis 2:1, wobei die längere der beiden Teilstrecken die Strecke vom Schwerpunkt zum Eckpunkt ist.

Sind die kartesischen Koordinaten der Eckpunkte des Dreiecks bekannt, so ergibt sich der Schwerpunkt   als arithmetisches Mittel.

 

Seine baryzentrischen Koordinaten sind daher  .

Ausgedrückt durch trilineare Koordinaten lautet der Schwerpunkt eines Dreiecks mit Seitenlängen  ,  ,  

 

Man kann den Schwerpunkt auch mit Hilfe der Länge einer Seite und der Höhe über der gleichen Seite, z. B. mit   und  , in kartesischen Koordinaten bestimmen. Der Ursprung des Koordinatensystems liegt im Eckpunkt   (siehe Abbildung). Auf diese Weise lassen sich die kartesischen Koordinaten des Schwerpunkts durch

 

berechnen.[6]

Der Schwerpunkt eines Dreiecks ist Mittelpunkt der Steiner-Ellipse (Steiner-Umellipse) und der Steiner-Inellipse.

Der Schwerpunkt eines Dreiecks ist zudem derjenige eindeutig bestimmte Punkt im Inneren des Dreiecks, dessen drei Verbindungsstrecken zu den Eckpunkten des Dreiecks dieses in drei Teildreiecke gleichen Flächeninhalts aufteilen.[7][8]
Der Kantenschwerpunkt eines Dreiecks (oder auch: Der Schwerpunkt des Dreiecksumfangs) lässt sich einfache Weise geometrisch ermitteln – es ist dessen Spieker-Punkt.

TrapezBearbeiten

 
Schwerpunkt eines Trapezes

Der Schwerpunkt des Trapezes lässt sich folgendermaßen konstruieren: Eine Schwerelinie halbiert die beiden parallelen Seiten. Eine zweite erhält man, indem man die parallelen Seiten um die Länge der jeweils anderen in entgegengesetzten Richtungen verlängert, und die beiden Endpunkte miteinander verbindet. Die Formel in kartesischen Koordinaten lautet (gemessen vom linken unteren Eckpunkt):

 

PolygonBearbeiten

 
Schwerpunkt im regelmäßigen Polygon mit zwei Schwerelinien   und  

Der Schwerpunkt eines nicht überschlagenen, geschlossenen, auch unregelmäßigen Polygons mit N Eckpunkten kann wie folgt aus den kartesischen Koordinaten   der Eckpunkte berechnet werden (der nullte Eckpunkt   und der  -te Eckpunkt   sind hierbei identisch). Die Eckpunkte werden fortlaufend gegen den Uhrzeigersinn durchnummeriert.[9] Der Schwerpunkt eines regelmäßigen Polygons entspricht dem Mittelpunkt seines Umkreises.[10]

Der Flächeninhalt   des Polygons kann mit der Gaußschen Dreiecksformel

 

bestimmt werden. Der Flächenschwerpunkt   des Polygons wird dann mit den Formeln

 

bestimmt.

KreisausschnittBearbeiten

 
Schwerpunkt eines Kreisteils

Ist der Ausschnitt des Kreises so gedreht und verschoben, dass die y-Achse des kartesischen Koordinatensystems eine Symmetrieachse des Kreisausschnitts ist und der Mittelpunkt (des Vollkreises) im Ursprung liegt (siehe Bild), dann lässt sich der Schwerpunkt im Bogenmaß durch

 

mit   berechnen.[11]

Musste der Kreis anfangs verschoben oder gedreht werden, dann muss zur Vervollständigung der Rechnung der berechnete Schwerpunkt entsprechend wieder zurückverschoben oder gedreht werden.

KreisabschnittBearbeiten

Um den Flächenschwerpunkt eines Kreisabschnitts näherungsweise zu berechnen, muss dieser im kartesischen Koordinatensystem so verschoben werden, dass der Mittelpunkt der Verbindungslinie der beiden Endpunkte im Koordinatenursprung liegt. Dann befindet sich der Schwerpunkt für   in guter Näherung etwas oberhalb von

 .

Bei   (Halbkreis) liegt der Schwerpunkt exakt bei  . Die prozentuale Abweichung steigt in etwa proportional mit h und beträgt bei   ungefähr 5,8 %. Daraus folgt der Ausdruck  , der den Schwerpunkt im Bereich von   mit einer Genauigkeit von besser als 5 Promille angibt. Die exakte Lage des Flächenschwerpunktes   im gesamten Bereich von   findet man mittels Einsetzen von   in die Formel für den auf den Kreismittelpunkt bezogenen Schwerpunkt[12]   :

 .

War zu Beginn eine Verschiebung oder Drehung notwendig, so muss der Schwerpunkt wieder entsprechend zurückverschoben werden.

KörperBearbeiten

Für dreidimensionale Körper kann man sowohl den Volumenschwerpunkt, also den Schwerpunkt des Vollkörpers, als auch den Flächenschwerpunkt, also den Schwerpunkt der Fläche, die den Körper begrenzt, berechnen.

Pyramide und KegelBearbeiten

 
Flächenschwerpunkt einer Pyramide

Um den Volumenschwerpunkt und den Flächenschwerpunkt einer Pyramide oder eines Kegels zu berechnen, verschiebt man sie im schiefwinkligen Koordinatensystem, so dass der Schwerpunkt der Grundfläche im Koordinatenursprung   liegt, und die y-Achse durch die Spitze geht. Dann kann der Volumenschwerpunkt einer Pyramide oder eines Kegels durch[13]

 

und der Flächenschwerpunkt der Mantelfläche durch

 

berechnet werden.

RotationsparaboloidBearbeiten

 
Schwerpunkt eines Rotationsparaboloids

Um den Volumenschwerpunkt und den Flächenschwerpunkt eines Rotationsparaboloids zu berechnen, wird es im kartesischen Koordinatensystem verschoben, so dass der Schwerpunkt der Grundfläche im Koordinatenursprung   liegt. Dann kann man den Volumenschwerpunkt des Rotationsparaboloids durch

 

berechnen. Der Flächenschwerpunkt sieht ein wenig komplizierter aus. Für die Komponenten   und   gilt ebenfalls wieder

 

und die Komponente   liegt bei

 

wobei der Ausdruck im Nenner des ersten Bruchs die Mantelfläche der nach rechts geöffneten Parabel   mit der Brennweite f darstellt. Ab   strebt   gegen  , anderenfalls gegen  .

KugelsegmentBearbeiten

 
Schwerpunkt eines Kugelsegments

Um den Volumenschwerpunkt und den Flächenschwerpunkt eines Kugelsegments zu berechnen, verschiebt man das Segment im kartesischen Koordinatensystem, so dass der Mittelpunkt der Vollkugel im Koordinatenursprung   liegt. Der Volumenschwerpunkt wird dann durch[14]

 

und der Flächenschwerpunkt durch

 

berechnet. ( )

Zusammenfassen von SchwerpunktenBearbeiten

Es ist möglich, mehrere Schwerpunkte einzelner Figuren zu einem gemeinsamen Schwerpunkt der Gesamtfigur zusammenzufassen, so dass sich der Schwerpunkt einer zusammengesetzten Figur aus den Schwerpunkten einzelner einfacher Elemente ergibt.

eindimensional zweidimensional dreidimensional allgemein
   

 

 

 
 

 

Die Koordinaten  ,   und   sind in einem frei wählbaren, aber einheitlichen kartesischen Koordinatensystem anzugeben. Weist eine Fläche (ein Körper) Aussparungen auf, so können obige Summenformeln ebenfalls angewendet werden unter Berücksichtigung, dass die ausgesparten Flächen (Volumen) mit negativem Vorzeichen in die Berechnung eingehen. Die Komponenten   des Schwerpunkts bilden den Vektor  .

Definition des Schwerpunkts durch IntegraleBearbeiten

Die Formeln zur Berechnung des Schwerpunkts elementargeometrischer Figuren können mit den nachfolgend angegebenen Integralen hergeleitet werden. Bei komplizierteren Figuren lassen sich diese Integrale häufig nur numerisch bestimmen.

Die Definition entspricht mathematisch der Mittelung aller Punkte des geometrischen Objekts (Körpers) im euklidischen Raum  . Bei Linien und Flächen im zweidimensionalen Raum   sind nur die Koordinaten   und   zu berechnen, die  -Koordinate entfällt. Der Integrationsbereich ist bei Linien eindimensional, bei Flächen zweidimensional und bei Körpern dreidimensional.

LinieBearbeiten

Für eine Linie   der Länge   ergibt sich der Schwerpunkt   durch

 

mit

 

Diese Integrale sind Kurvenintegrale erster Art.

FlächenBearbeiten

Für eine Fläche   mit Flächeninhalt   ist der Schwerpunkt definiert durch

 

mit

 

Diese Integrale sind Oberflächenintegrale mit skalarem Flächenelement.

KörperBearbeiten

Im Fall eines beschränkten Körpers   im dreidimensionalen Raum mit Volumen   ist der Schwerpunkt definiert durch

 

mit

 

Diese Integrale sind Volumenintegrale.

AllgemeinBearbeiten

Sei   ein Körper mit dem Volumen  . Der Schwerpunkt   von   ist definiert durch

 

wobei   das m-dimensionale Volumenelement und   die Dimension von  , mit   ist.[15][16]

Integration bei symmetrischen ObjektenBearbeiten

Bei Objekten die Symmetrieelemente, z. B. eine Symmetrieachse oder eine Symmetrieebene besitzen, vereinfacht sich die Berechnung des Schwerpunkts in vielen Fällen, da der Schwerpunkt immer im Symmetrieelement enthalten ist. Hat das Objekt eine Symmetrieachse, so kann das Volumenelement in Abhängigkeit vom infinitesimalen Achsenelement ausgedrückt werden. Es braucht also nur noch über die Symmetrieachse integriert zu werden.[17]

Alternative Integralformel für Flächen im Bearbeiten

Eine andere Möglichkeit die Schwerpunktskoordinaten einer Fläche zu errechnen, ergibt sich durch die Formeln:

 ,  

wobei die Grenzen   und   die Schnittpunkte der Funktionen   und   darstellen. Durch diese Formel lässt sich der Schwerpunkt einer beliebigen ebenen Fläche, welche zwischen zwei Funktionen eingeschlossen ist, berechnen. Bedingungen hierfür sind  ,  [18]

Beispiele zur IntegralrechnungBearbeiten

Linienschwerpunkt eines KreisbogensBearbeiten

 
Schwerpunkt eines Kreisbogens

Punkte auf einem ebenen Kreisbogen können am einfachsten in Polarkoordinaten angegeben werden. Wenn die y-Achse auf der Symmetrielinie mit Ursprung im Kreismittelpunkt liegt, lauten die Koordinaten:

 

Die Länge   des Kreisbogens ergibt sich zu:

 

wobei das infinitesimale Längenelement   durch   substituiert werden kann.

Aus Symmetriegründen ist  . Für die y-Koordinate des Linienschwerpunkts ergibt sich aus der Definitionsgleichung:

 

Die Integration in den Grenzen ergibt dann

 

Flächenschwerpunkt einer ParabelBearbeiten

 
Parabel   mit schraffierter Fläche unter der x-Achse; der Schwerpunkt (roter Punkt) liegt bei (0;−1,6).

Zur praktischen Bestimmung der x-Koordinate des Schwerpunktes im zweidimensionalen Fall substituiert man   mit  , was einem infinitesimalen Flächenstreifen entspricht. Ferner entspricht hierbei   der die Fläche begrenzenden Funktion  .

Für die praktische Berechnung der y-Koordinate im zweidimensionalen Fall gibt es prinzipiell zwei Vorgehensweisen:

  • Entweder man bildet Umkehrfunktion   und berechnet das Integral  , wobei die „neuen“ Integrationsgrenzen nun auf der y-Achse zu finden sind,
  • oder man nutzt aus, dass der Schwerpunkt eines jeden zur y-Achse parallelen infinitesimalen Flächenstreifen   ist. Dann erhält man zur Bestimmung der y-Koordinate eine einfachere Formel, mit deren Hilfe das Bilden der Umkehrfunktion erspart bleibt:

Wir suchen den Flächenschwerpunkt jener Fläche, die durch eine Parabel   und durch die x-Achse definiert ist (siehe nebenstehende Abbildung).

Zuerst bestimmen wir den Inhalt   der Fläche

 

Die Grenzen des Integrals sind bei Begrenzung der Fläche durch die x-Achse die Nullstellen der Funktion.

Die  -Koordinate des Schwerpunktes ergibt sich zu

 

Die  -Koordinate ergibt sich zu

 

Siehe auchBearbeiten

LiteraturBearbeiten

  • Hermann Athen, Jörn Bruhn (Hrsg.): Lexikon der Schulmathematik und angrenzender Gebiete. Band 4: S bis Z. Aulis Verlag, Köln 1978, ISBN 3-7614-0242-2, S. 943–944.
  • H. S. M. Coxeter: Unvergängliche Geometrie. Ins Deutsche übersetzt von J. J. Burckhardt (= Wissenschaft und Kultur. Band 17). Birkhäuser Verlag, Basel, Stuttgart 1963 (MR0692941).
  • Egbert Harzheim: Einführung in die Kombinatorische Topologie (= Die Mathematik. Einführungen in Gegenstand und Ergebnisse ihrer Teilgebiete und Nachbarwissenschaften). Wissenschaftliche Buchgesellschaft, Darmstadt 1978, ISBN 3-534-07016-X (MR0533264).
  • Harald Scheid (Hrsg.): DUDEN: Rechnen und Mathematik. 4., völlig neu bearbeitete Auflage. Bibliographisches Institut, Mannheim / Wien / Zürich 1985, ISBN 3-411-02423-2.
  • Thomas Westermann: Mathematik für Ingenieure. Springer 2011, ISBN 978-3-642-12759-5, S. 336–338, (Auszug in der Google-Buchsuche)

WeblinksBearbeiten

  Commons: Centroid – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Schwerpunkt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten

  1. Egbert Harzheim: Einführung in die Kombinatorische Topologie. 1978, S. 31 ff
  2. Hermann Athen, Jörn Bruhn (Hrsg.): Lexikon der Schulmathematik und angrenzender Gebiete. Band 4: S bis Z. 1978, S. 944
  3. Coxeter, op. cit., S. 242
  4. DUDEN: Rechnen und Mathematik. 1985, S. 652
  5. Alfred Böge, Technische Mechanik. Vieweg + Teubner 2009, S. 84 (eingeschränkte Vorschau in der Google-Buchsuche)
  6. Alfred Böge: Technische Mechanik. Vieweg + Teubner, Wiesbaden 2011, ISBN 978-3-8348-1355-8, S. 77.
  7. Friedrich Joseph Pythagoras Riecke (Hrsg.): Mathematische Unterhaltungen. Erstes Heft. 1973, S. 76
  8. Den Beweis von Riecke (und einen anderen Beweis) findet man im Beweisarchiv.
  9. Calculating the area and centroid of a polygon (Memento vom 22. September 2009 im Internet Archive)
  10. Lothar Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Vieweg, Wiesbaden 2006, ISBN 978-3-8348-0156-2, S. 32–38.
  11. Frank Jablonski: Schwerpunkt (Memento vom 11. Dezember 2009 im Internet Archive), Universität Bremen, S. 114 (PDF; 688 kB)
  12. Alfred Böge et al.: Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik. Springer 2013, Seite C14, Gl. (39)
  13. S. 34
  14. S. 38
  15. Centroid. In: M. Hazewinkel: Encyclopedia of Mathematics. („center of a compact set“)
  16. Norbert Henze, Günter Last: Mathematik für Wirtschaftsingenieure und für naturwissenschaftlich-technische Studiengänge – Band II. Vieweg+Teubner, 2004, ISBN 3-528-03191-3, S. 128 (Auszug in der Google-Buchsuche)
  17. David Halliday: Physik / David Halliday; Robert Resnick; Jearl Walker. Hrsg. der dt. Übers. Stephan W. Koch. [Die Übers. Anna Schleitzer …] Wiley-VCH-Verlag, Weinheim 2007, ISBN 978-3-527-40746-0, S. 192 (eingeschränkte Vorschau in der Google-Buchsuche).
  18. Thomas Westermann: Mathematik für Ingenieure. Springer 2011, ISBN 978-3-642-12759-5, S. 338 (Auszug in der Google-Buchsuche).