Hauptmenü öffnen

Kegel (Geometrie)

geometrischer Körper
(Weitergeleitet von Konisch)
Gerader Kreiskegel (links) und schiefer Kreiskegel

Ein Kegel oder Konus ist ein geometrischer Körper, der entsteht, wenn man alle Punkte eines in einer Ebene liegenden, begrenzten und zusammenhängenden Flächenstücks geradlinig mit einem Punkt (Spitze bzw. Apex) außerhalb der Ebene verbindet. Ist das Flächenstück eine Kreisscheibe, wird der Körper Kreiskegel genannt. Das Flächenstück nennt man Grundfläche, deren Begrenzungslinie die Leitkurve und den Punkt die Spitze oder den Scheitel des Kegels. Ein Kegel hat also eine Spitze (den Scheitelpunkt), eine Kante (die Leitkurve) und zwei Flächen (die Mantel- und die Grundfläche).

Unter der Höhe des Kegels versteht man einerseits das Lot von der Spitze auf die Grundfläche (die Höhe steht also immer senkrecht zur Grundfläche), andererseits aber auch die Länge dieses Lotes (also den Abstand der Spitze von der Grundfläche).

Die Verbindungsstrecken der Spitze mit der Leitkurve heißen Mantellinien, ihre Vereinigung bildet den Kegelmantel oder die Mantelfläche.

Inhaltsverzeichnis

Gerader und schiefer KegelBearbeiten

Wenn in der Geometrie von einem Kegel gesprochen wird, ist häufig der Spezialfall des geraden Kreiskegels gemeint. Unter einem Kreiskegel versteht man einen Körper, der durch einen Kreis (Grundkreis oder Basiskreis) und einen Punkt außerhalb der Ebene des Kreises (Spitze des Kegels) festgelegt ist.

Die Ebene, in welcher der Basiskreis liegt, heißt Basis(kreis)ebene. Unter dem Radius   des Kegels versteht man normalerweise den Radius des Basiskreises. Die Gerade durch den Mittelpunkt des Grundkreises und die Spitze nennt man die Achse des Kegels. Die Höhe   des Kegels ist der Abstand der Spitze von der Basisebene; dieser Abstand muss senkrecht zur Basisebene gemessen werden.

Steht die Achse senkrecht zur Basisebene, so liegt ein gerader Kreiskegel oder Drehkegel vor. Andernfalls spricht man von einem schiefen Kreiskegel oder elliptischen Kegel. Jeder elliptische Kegel hat zwei Richtungen, in denen sein Schnitt mit einer Ebene ein Kreis ist; diese Tatsache macht sich die stereografische Projektion als Kreistreue zunutze.

Die Bezeichnung „Drehkegel“ deutet darauf hin, dass es sich um einen Rotationskörper handelt. Er entsteht durch Rotation eines rechtwinkligen Dreiecks um eine seiner beiden Katheten. In diesem Fall werden die Mantellinien (also die Verbindungsstrecken der (Rand-) Punkte des Basiskreises mit der Spitze) auch Erzeugende genannt ( ), da sie den Mantel „erzeugen“. Der Öffnungswinkel beträgt das Doppelte des Winkels zwischen den Mantellinien und der Achse eines Drehkegels. Der Winkel   zwischen den Mantellinien und der Achse heißt halber Öffnungswinkel.

Ein Drehkegel mit Öffnungswinkel 60° heißt gleichseitiger Kegel. Diese Bezeichnung erklärt sich wie folgt: Schneidet man einen solchen Kegel mit einer Ebene, die die Achse enthält, so erhält man ein gleichseitiges Dreieck.

Vor allem in der Technik wird für den Drehkegel auch das Wort Konus (von lat. conus) verwendet. Das zugehörige Eigenschaftswort konisch bezeichnet Objekte mit der Form eines Drehkegels oder eines (Dreh-) Kegelstumpfs.

Insbesondere im Zusammenhang mit Kegelschnitten wird das Wort „Kegel“ auch im Sinn des unten erwähnten Doppelkegels gebraucht.

Größen und FormelnBearbeiten

 
Gerader Kreiskegel
Größen und Formeln
Radius

eines geraden Kreiskegels

 
Höhe

eines geraden Kreiskegels

 
Mantellinie

eines geraden Kreiskegels

 
Winkel  

eines geraden Kreiskegels
ist der halbe Öffnungswinkel,
auch halber Kegelwinkel genannt

Anwendung der trigonometrischen Funktionen

 
 
 

Durchmesser der Grundfläche

eines geraden Kreiskegels

 
Grundfläche

eines Kreiskegels

 
Flächeninhalt der Mantelfläche

eines geraden Kreiskegels

 
Oberfläche

eines geraden Kreiskegels

 
Volumen

eines beliebigen Kreiskegels

 
Trägheitsmoment

Die Drehachse verläuft durch die Spitze
und durch die Mitte der Grundfläche.

eines rotierenden, massiven und geraden Kreiskegels:

 
des rotierenden Mantels eines geraden Kreiskegels:
 
wobei   die Dichte und   die Masse ist.

BeweiseBearbeiten

VolumenBearbeiten

Bereits im Jahr 1781 beschreibt Johann Friedrich Lorenz in seiner Übersetzung Euklids Elemente Euklids Feststellung: Jeder Kegel ist der dritte Theil eines Cylinders, welcher mit ihm einerley Grundfläche, ABCD, und gleiche Höhe hat.[1] In der Elementargeometrie wird die Volumenformel oft mit dem Prinzip von Cavalieri begründet. Man vergleicht den gegebenen Kreiskegel mit einer Pyramide von gleicher Grundfläche und Höhe. Für Parallelebenen zur Grundfläche in beliebigem Abstand folgt aus den Gesetzen der Ähnlichkeit bzw. der zentrischen Streckung, dass die entsprechenden Schnittflächen gleichen Flächeninhalt besitzen. Daher müssen die beiden Körper im Volumen übereinstimmen. Die für Pyramiden der Grundfläche   und Höhe   gültige Volumenformel

 

kann daher auf den Kegel übertragen werden. Zusammen mit der Formel für die Kreisfläche erhält man

 .

Es ist auch möglich, den Kegel durch eine Pyramide mit regelmäßigem n-Eck als Grundfläche (für  ) anzunähern.

Ein anderer Beweis (hier speziell für den geraden Kreiskegel dargestellt) setzt die Integralrechnung als Hilfsmittel ein. Es wird ein kartesisches Koordinatensystem verwendet, wobei die Kegelspitze im Ursprung (0|0) und der Mittelpunkt des Grundkreises im Punkt ( |0) liegen. Man kann sich nun den Kegel zusammengesetzt denken aus unendlich vielen zylindrischen Scheiben infinitesimaler (unendlich kleiner) Höhe (Dicke)  . Da der Abstand einer solchen Zylinderscheibe von der Kegelspitze durch die Koordinate   gegeben ist, gilt nach dem Strahlensatz:

Radius eines infinitesimalen Zylinders:  
Volumen eines infinitesimalen Zylinders:  

Das gesamte Volumen des Drehkegels entspricht der Gesamtheit all dieser unendlich kleinen Zylinder. Zur Berechnung bildet man das bestimmte Integral mit den Integrationsgrenzen 0 und  :

 
 
 
 

Damit kommt man zur bekannten Formel

 .

MantelflächeBearbeiten

 
Gerader Kreiskegel mit abgewickelter Mantelfläche

Die Mantelfläche eines geraden Kreiskegels ist gekrümmt, aber zu einem Kreissektor abwickelbar. Der Radius dieses Sektors stimmt mit der Länge einer Mantellinie des Kegels ( ) überein. Den Mittelpunktswinkel   des Kreissektors kann man durch eine Verhältnisgleichung ermitteln. Er verhält sich zum 360°-Winkel wie die Kreisbogenlänge   (Umfang des Basiskreises) zum gesamten Umfang eines Kreises mit Radius  :

 

Der gesuchte Flächeninhalt der Mantelfläche ergibt sich nun aus der Formel für den Flächeninhalt eines Kreissektors:

 

Die Abwicklung der Mantelfläche eines geraden Kreiskegels wird in der Darstellenden Geometrie näherungsweise mit Zirkel und Lineal durchgeführt: s. Abwicklung (Darstellende Geometrie).

Mittelpunktswinkel αBearbeiten

Der Mittelpunktswinkel   kann ausgehend von der Formel

 

berechnet werden:

 

ebenso

 

mit   = Grundflächendurchmesser,   = Mantellinie = Zeichenradius.

DoppelkegelBearbeiten

 
Doppelkegel mit gegeneinander gerichteten Spitzen, einer Sanduhr ähnlich

Ein Doppelkegel entsteht als Rotationsfläche einer Geraden um eine sie nicht rechtwinkelig schneidende Achse. Es entstehen zwei Drehkegel mit dem gleichen Öffnungswinkel und einer gemeinsamen Achse, die sich in der Spitze berühren. Schneidet man einen solchen unendlichen Doppelkegel mit einer Ebene, entstehen die Kegelschnitte: Kreis, Ellipse, Parabel, Hyperbel.

Analytische BeschreibungBearbeiten

Ein senkrechter Kreiskegel (Doppelkegel) mit der Spitze im Ursprung und der z-Achse als Symmetrieachse lässt sich durch eine Gleichung

  •  

beschreiben. Die Zahl   ist der Radius der Höhenkreise der Höhen  . Ist  , so vereinfacht sich die Gleichung zu

  •  

und man nennt in diesem Fall den Kegel Einheitskegel (analog zum Einheitskreis).

So, wie eine beliebige Ellipse das affine Bild des Einheitskreises ist, ist ein beliebiger Kegel (als Quadrik) das affine Bild des Einheitskegels. Die einfachsten affinen Abbildungen sind Skalierungen der Koordinaten. Skaliert man die x- und y-Achse, so ergeben sich Kegel mit Gleichungen

  •  
 
Vektoren für die Parameterdarstellung eines allgemeinen Kegels (Quadrik)

Die Höhenschnitte solcher Kegel sind Ellipsen. Der Schnitt mit der Höhenebene   ist die Ellipse  . Der Kegel ist gleich der Vereinigung aller Geraden (Erzeugenden) durch die Spitze und die Ellipsenpunkte. Beschreibt man die Ellipse   durch die Parameterdarstellung   und stellt die Erzeugenden in Parameterform dar, erhält man die folgende Parameterdarstellung des Kegels  :

  •  

Die Gleichung eines im Raum beliebig gelagerten Kegels ist schwierig anzugeben. Die Parameterdarstellung eines beliebigen Kegels dagegen relativ einfach:

  •  

Dabei ist   die Spitze des Kegels und   sind drei linear unabhängige Vektoren.   zeigt in Richtung der Kegelachse (s. Bild).[2] Für jeden konstanten Parameter   ergibt sich eine Ellipse, mit der man sich (zusammen mit der Spitze) den Kegel erzeugt denken kann.

Sind die drei Vektoren   paarweise orthogonal und ist  , so wird durch die Parameterdarstellung ein senkrechter Kreiskegel beschrieben.

Dass ein beliebiger elliptischer Kegel auch immer Kreise enthält, wird in Kreisschnittebene gezeigt.

Kegelkoordinaten (Koordinaten-Transformation)Bearbeiten

ParameterdarstellungBearbeiten

Die Parameterdarstellung des Kegels kann man wie folgt beschreiben. Mit der Abbildung   lassen sich die Kegelkoordinaten in kartesische Koordinaten umrechnen. Mit der Abbildung   lassen sich die kartesischen Koordinaten in Kegelkoordinaten umrechnen.

 

Umrechnung eines gegebenen Kegelsegments in KegelkoordinatenBearbeiten

 
Kegelsegment mit Höhe h und den Radien r1 und r2

Wie folgt seien die Parameter eines Kegelsegments gegeben (siehe nebenstehende Abbildung):

 

Dann lassen sich die Grenzen in Kegelparametern wie folgt ausdrücken:

 

Die Parameter bewegen sich also im Bereich:

 

FlächennormalenvektorBearbeiten

Der Flächennormalenvektor ist orthogonal zur Mantelfläche des Kegels. Er wird benötigt um z. B. Flussberechnungen durch die Mantelfläche durchzuführen. Den Flächeninhalt der Mantelfläche lässt sich als Doppelintegral über die Norm des Flächennormalenvektors berechnen.

 

Einheitsvektoren der Kegelkoordinaten in kartesischen KomponentenBearbeiten

Die Einheitsvektoren in kartesischen Komponenten erhält man durch Normierung der Tangentenvektoren der Parametrisierung. Der Tangentenvektor ergibt sich durch die erste partielle Ableitung nach der jeweiligen Variablen. Diese drei Einheitsvektoren bilden eine Normalbasis. Es handelt sich hierbei nicht um eine Orthonormalbasis, da nicht alle Einheitsvektoren orthogonal zueinander sind.

 

TransformationsmatrizenBearbeiten

Jacobi-Matrix (Funktionalmatrix)Bearbeiten

Die Funktionalmatrix und ihre Inverse werden benötigt, um später die partiellen Ableitungen zu transformieren.

 

 

Transformationsmatrix SBearbeiten

Die Transformationsmatrix wird benötigt um die Einheitsvektoren und Vektorfelder zu transformieren. Die Matrix setzt sich aus den Einheitsvektoren der Parametrisierung als Spaltenvektoren zusammen. Genaueres findet man unter dem Artikel Basiswechsel.

 

Transformation der partiellen AbleitungenBearbeiten

Die partiellen Ableitungen lassen sich mit der inversen Jacobi-Matrix transformieren.

 

Als Ergebnis erhält man:

 

 

 

Transformation der EinheitsvektorenBearbeiten

Die Einheitsvektoren lassen sich mit der inversen Transformationsmatrix transformieren.

 

Als Ergebnis erhält man:

 

 

 

Transformation von VektorfeldernBearbeiten

Vektorfelder lassen sich durch Matrixmultiplikation mit der Transformationsmatrix transformieren.

 

Als Ergebnis erhält man:

 

 

 

Oberflächen- und VolumendifferentialBearbeiten

Das Volumendifferential lässt sich über die Determinante der Jacobi-Matrix angeben. Dies bietet die Möglichkeit z. B. das Volumen eines Kegels per Dreifachintegral zu berechnen.

 

Das Oberflächendifferential lässt sich mit der Norm des Flächennormalenvektors angeben. Damit kann man z. B. per Doppelintegral den Flächeninhalt der Mantelfläche bestimmen.

 

Transformierte Vektor-DifferentialoperatorenBearbeiten

Nabla-OperatorBearbeiten

Eine Darstellung des Nabla-Operators in Kegelkoordinaten erhält man, indem man die transformierten Einheitsvektoren und partielle Ableitungen in den kartesischen Nabla-Operator einsetzt:

 

GradientBearbeiten

Den Gradienten in Kegelkoordinaten erhält man, indem man den transformieren Nabla-Operator auf ein Skalarfeld in Kegelkoordinaten anwendet.

 

DivergenzBearbeiten

Den Operator für die Divergenz eines Vektorfeldes erhält man, indem man den Nabla-Operator auf das Vektorfeld in Kegelkoordinaten anwendet:

 

Laplace-OperatorBearbeiten

Der Laplace-Operator   ist die Divergenz eines Gradienten. In Kegelkoordinaten ergibt dies den folgenden Operator:

 

RotationBearbeiten

Die Rotation eines Vektorfeldes lässt sich als Kreuzprodukt des Nabla-Operators mit den Elementen des Vektorfelds auffassen:

 

VerallgemeinerungenBearbeiten

Konvexe Mengen

Man verallgemeinert die Eigenschaft des (unendlichen) Kegels, aus Strahlen mit gemeinsamem Anfangspunkt zu bestehen, zu kegelförmigen Mengen, zu denen dann z. B. auch eine unendlich hohe Pyramide gehört. Besonderes Interesse gilt dabei den konvexen Kegeln, die in der linearen Optimierung eine Rolle spielen.

Dabei ist der Begriff des Ordnungskegels wichtig: Definiert man eine Halbordnung mittels  , wobei   ein konvexer und abgeschlossener Kegel ist, so ist diese reflexiv, antisymmetrisch, transitiv und multiplikativ sowie additiv verträglich. Damit ist eine solche Halbordnung eine Verallgemeinerung der (komponentenweisen) arithmetischen Halbordnung, der der positive Orthant   zugrunde liegt. Eine mögliche Definition eines solchen Kegels lautet:

Sei   ein reeller Banachraum und   eine nichtleere Teilmenge von  .   heißt Kegel, wenn folgende Bedingungen erfüllt sind:

  1.   ist abgeschlossen,
  2.  ,
  3.  ,
  4.  .

Wird die vierte Bedingung weggelassen, so erhält man eine mögliche Definition eines Keils.

Allgemeinere Grundflächen

  • Als weitere Verallgemeinerung des Kegels kann man beliebige Grundflächen zulassen. Der Kegel entsteht dann als konvexe Hülle der Grundfläche und eines weiteren Punktes außerhalb der Fläche (der Kegelspitze). In diesem Sinne ist eine Pyramide ein Kegel über einem Vieleck.
  • In der synthetischen Geometrie wird der Begriff Kegel für bestimmte quadratische Mengen in projektiven Geometrien beliebiger Dimension definiert. Siehe dazu Quadratische Menge#Kegel.
Topologie

In der Topologie versteht man unter dem Kegel über einem topologischen Raum   den Raum, den man aus dem Produkt   durch Identifikation aller Punkte in   (der „Kegelspitze“) erhält.

Den entsprechenden „Doppelkegel“ (durch zusätzliche Identifikation von  ) bezeichnet man auch als Einhängung oder Suspension.

Siehe auchBearbeiten

LiteraturBearbeiten

  • Rolf Baumann: Geometrie für die 9./10. Klasse. Zentrische Streckung, Satz des Pythagoras, Kreis- und Körperberechnungen. 4. Auflage. Mentor-Verlag, München 2003, ISBN 3-580-63635-9.

WeblinksBearbeiten

  Commons: Kegel (Geometrie) – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. Johann Friedrich Lorenz: Euklids Elemente, fünfzehn Bücher, aus dem Griechischen übersetzt. Hrsg.: Im Verlag der Buchhandlung des Waysenhauses. Zwölftes Buch. Halle 1781, S. 308 ff. (Der 10. Satz. Jeder Kegel ist der dritte Theil eines Cylinders, … [abgerufen am 1. November 2018]).
  2. E. Hartmann: Computerunterstützte Darstellende und konstruktive Geometrie. Uni Darmstadt (PDF; 3,4 MB), S. 105.