Ein Konoid (von griechisch κωνος Kegel und -ειδης ähnlich) ist in der Mathematik eine Regelfläche, deren Erzeugendenschar (Geraden) die beiden Zusatzbedingungen

  • (1) Alle Erzeugenden der Fläche sind parallel zu einer Ebene, der Richtebene.
  • (2) Alle Erzeugenden schneiden eine feste Gerade, die Achse.
gerades Kreis-Konoid: Leitkurve (rot) ist ein Kreis, die Achse (blau) steht senkrecht auf der Richtebene (gelb)
gerades Kreiskonoid (beschränkt wie im ersten Bild): Umrisse in 3-Tafelprojektion

erfüllt.

  • Das Konoid heißt gerade, falls die Achse zur Richtebene senkrecht steht.

Wegen (1) ist jedes Konoid eine Catalansche Fläche und kann durch eine Parameterdarstellung

beschrieben werden. Jede Flächenkurve mit festem Parameter ist eine Erzeugende, beschreibt die Leitkurve und die Vektoren sind alle parallel zur Richtebene. Die Planarität der Vektoren lässt sich bei hinreichender Differenzierbarkeit durch

ausdrücken.

  • Ist die Leitkurve ein Kreis, so heißt das Konoid Kreiskonoid.

Bemerkung:

  1. Ein Konoid ist (wie eine Gerade) unbeschränkt. Eine grafische Darstellung kann also immer nur einen endlichen Teil der Fläche zeigen.
  2. Der Begriff Konoid wurde bereits von Archimedes in seinem Traktat Über Konoide und Sphäroide geprägt.

Beispiele Bearbeiten

Gerades Kreiskonoid Bearbeiten

Die Parameterdarstellung

 
beschreibt ein gerades Kreiskonoid mit dem Einheitskreis in der x-y-Ebene als Leitkurve und einer zur y-z-Ebene parallelen Richtebene. Die Achse ist die Gerade  

Besonderheiten: 1) Jeder horizontale Schnitt ist eine Ellipse, 2) Die Umrisse der im Bild gezeigten Teilfläche bzgl. der Hauptrichtungen sind ein Rechteck, ein Kreis und ein Dreieck (s. 2. Bild), 3)   ist eine implizite Darstellung, das heißt, das gerade Kreiskonoid ist eine Fläche 4. Grades. 4) Die Keplersche Fassregel liefert bei einem geraden Kreiskonoid mit Grundkreisradius   und Höhe   das exakte Volumen:  .

Die implizite Darstellung wird von der ganzen Gerade   erfüllt. In den Punkten dieser Gerade existieren keine Tangentialebenen. Man nennt solche Punkte singulär.

Hyperbolisches Paraboloid Bearbeiten

 
hyperbolisches Paraboloid als Konoid
rot: Leitkurve, blau:Achse, Richtebene ist parallel zur y-z-Ebene

Die Parameterdarstellung

 
 
beschreibt das hyperbolische Paraboloid mit der Gleichung   Es ist eine Fläche 2. Grades (Quadrik).

Die Leitkurve dieses Konoids ist die Gerade   (im Bild rot), die Richtebene ist parallel zur y-z-Ebene. Wählt man die x-Achse als Achse, ist das Konoid gerade. Da bei diesem Beispiel durch jeden Punkt   der Fläche außer der Erzeugenden   auch die weitere Gerade   verläuft, kann man auch eine dieser weiteren Geraden als Achse wählen. Allerdings ist nur die zuerst genannte Achse senkrecht zur Richtebene. In diesem Fall könnte man die x-Achse sowohl als Leitkurve als auch als Achse wählen.

Das hyperbolische Paraboloid besitzt keine singulären Punkte.

Plücker-Konoid Bearbeiten

 
Plücker Konoid
rot: Leitkurve, blau: Achse,
die Richtebene ist parallel zur x-y-Ebene

Die Parameterdarstellung

 
 

stellt ein Plücker-Konoid mit der Gleichung

  dar.

Die Leitkurve ist eine zweifach durchlaufene Strecke auf der z-Achse, die Achse des Konoids ist die z-Achse und die Richtebene ist parallel zur x-y-Ebene. Da die Achse senkrecht auf der Richtebene steht, ist das Konoid gerade.

Die implizite Darstellung wird von der ganzen z-Achse erfüllt. Die Punkte der z-Achse sind singulär (es existieren keine Tangentialebenen).

Whitney Umbrella Bearbeiten

 
Whitney Umbrella

Die Parameterdarstellung

 
 

stellt einen Whitney Umbrella mit der Gleichung   dar. Die Fläche ist ein Konoid mit der zweifach durchlaufenen positiven z-Achse als Leitkurve, der z-Achse als Achse und einer zur x-y-Ebene parallelen Richtebene. Da die Achse senkrecht auf der Richtebene steht, ist auch dieses Konoid gerade.

Die implizite Darstellung wird auch von der negativen z-Achse, dem Griff des Schirms, erfüllt. Die Punkte der z-Achse sind singulär (es existieren keine Tangentialebenen).

Parabolisches Konoid Bearbeiten

 
parabolisches Konoid: Leitkurve ist eine Parabel

Die Parameterdarstellung

 
 

stellt ein parabolisches Konoid mit der Gleichung   dar. Das Konoid hat eine Parabel als Leitkurve, die y-Achse als Achse und eine zur x-z-Ebene parallele Richtebene. Da die Achse senkrecht auf der Richtebene steht, ist das Konoid gerade. Es wird in der Architektur als Dachfläche benutzt (s. Anwendungen).

Das parabolische Konoid besitzt keine singulären Punkte.

Wendelfläche Bearbeiten

Auch die Wendelfläche ist ein gerades Konoid. Sie besitzt keine Singularitäten.

Anwendungen Bearbeiten

 
Konoid in der Architektur
 
Konoide in der Architektur

In der Mathematik Bearbeiten

Unter den Konoiden gibt es zahlreiche einfache Beispiele von Flächen mit Singularitäten.

In der Architektur Bearbeiten

Konoide finden, wie andere Regelflächen auch, in der Architektur Verwendung, da sie sich leicht aus Strecken (Balken, Stäbe) modellieren lassen. Gerade Konoide können besonders leicht hergestellt werden: Man fädelt Stäbe so auf eine Achse auf, dass sie sich nur um diese Achse drehen können. Anschließend lenkt man die Stäbe mit Hilfe einer beliebigen Leitkurve aus und erzeugt damit ein gerades Konoid. (Siehe parabolisches Konoid.)

Weblinks Bearbeiten

Literatur Bearbeiten

  • Kleine Enzyklopädie Mathematik, Harri Deutsch-Verlag, 1977, S. 219.