Stern (Geometrie)

geometrische Figur

In der Geometrie versteht man unter einem regelmäßigen Stern ein normalerweise nichtkonvexes regelmäßiges Polygon, dessen Kanten alle gleich lang sind.

Regelmäßige Sterne sind spiegelsymmetrisch und rotationssymmetrisch. Symmetriezentrum ist der Mittelpunkt von Umkreis und Inkreis. Die Winkel, Längen und Flächeninhalte, die die gleiche Lage zum Symmetriezentrum haben, sind daher gleich. Unter anderem sind alle Seitenlängen und alle Innenwinkel gleich.

Die Bezeichnung Stern für ein solches ebenes Polygon wird in der kombinatorischen Geometrie weiter eingeschränkt durch die Bedingung, dass die Geraden, auf denen die Kanten des Sterns liegen, stets durch zwei konvexe äußere Ecken des Sterns verlaufen und wird dann als Sternpolygon bezeichnet. Alternativ wird daher in der kombinatorischen Geometrie das Sternpolygon definiert als ein regelmäßiges (gleichseitiges und gleichwinkliges), überschlagenes nicht-konvexes, ebenes Polygon. Überschlagen bedeutet dabei, dass sich die Seiten innerhalb des Polygons schneiden dürfen. Die Bezeichnung Sternpolygon ist erst im 20. Jahrhundert aufgekommen, als Geometer anfingen Pflasterungen kombinatorisch zu studieren.[1] Die Konstruktion dieser sternförmigen Polygone ist viel älter, zum Beispiel das Pentagramm und das Hexagramm, das auch als Davidstern bekannt ist.

Hiervon zu unterscheiden sind die in der Topologie und Analysis betrachteten Sterngebiete, zu denen auch die konvexen Mengen gehören und die nicht polygonal zu sein brauchen.

KonstruktionBearbeiten

Ein regelmäßiger Stern entsteht, indem man in einem ebenen regelmäßigen  -Eck jeden Eckpunkt mit einem nicht benachbarten Eckpunkt durch eine gerade Strecke verbindet und dieses Verfahren fortsetzt, bis der ursprüngliche Eckpunkt wieder erreicht wird. Werden die Ecken mit Indexen durchnummeriert und nur die mit einer geraden Strecke verbunden, deren – fortlaufende – Indexe die Differenz   haben. Dabei wird der Umkreis äquidistant in   Kreisbögen unterteilt.

Aus einem regelmäßigen  -Eck lassen sich regelmäßige Sterne konstruieren. Diese werden als  -Sterne bezeichnet, wobei   das Schläfli-Symbol mit   ist. Sind   und   teilerfremd, ist der Stern zusammenhängend, lässt sich in einem Zug zeichnen und wird auch Sternpolygon genannt. Ansonsten zerfällt er in so viele regelmäßige Polygone, wie der größte gemeinsame Teiler   angibt. Die Anzahl der Ecken dieser Polygone ist also gleich  . Wenn   eine Primzahl ist, sind alle  -Sterne zusammenhängend. Betrachtet man jeweils die Anzahl der zusammenhängenden Sternpolygone für eine gegebene Anzahl   der Ecken, dann erhält man die Folge A055684 in OEIS. Diese Anzahl ist gleich  . Dabei bezeichnet   die Eulersche Phi-Funktion.

KenngrößenBearbeiten

WinkelBearbeiten

 
Die Diagonalen, die von einer Ecke eines regelmäßigen Polygons ausgehen, bilden gleiche Winkel, die halb so groß wie die Mittelpunktswinkel sind.
 
Die Innenwinkel im {8/2}-Stern (Achtort) sind gleich 90°.
 
Die Innenwinkel im {8/3}-Stern (Achterstern) sind gleich 45°.

Die Ecken eines regelmäßigen Sterns liegen und konzyklisch auf einem gemeinsamen Kreis. Ein regelmäßiger Stern besitzt so einen Umkreis mit Umkreisradius  . Zudem liegen die Ecken äquidistant auf dem Kreis, das heißt, nebeneinander liegende Ecken erscheinen unter dem gleichen Mittelpunktswinkel

 

Daher hat ein solcher Stern auch einen Inkreis mit Inkreisradius  . Der Inkreis berührt die Seiten in den Seitenmittelpunkten. Der Inkreismittelpunkt stimmt mit dem Umkreismittelpunkt überein.

Verbindet man die benachbarten Ecken des regelmäßigen Sterns, dann erhält man ein regelmäßiges  -Eck. Die Diagonalen, die von einer Ecke dieses Polygons ausgehen, bilden gleiche Winkel, die halb so groß sind wie die Mittelpunktswinkel und jeweils   betragen.

Das kann man einsehen, indem man die gleichschenkligen Dreiecke betrachtet, die aus einer der Diagonalen und zwei Umkreisradien gebildet werden. Eine andere Möglichkeit ist es, die Diagonalen um den Winkel   mit dem Mittelpunkt als Drehzentrum zu drehen oder den Kreiswinkelsatz für den Umkreis anzuwenden.

Zwischen zwei benachbarten Seiten des Sterns verlaufen Diagonalen, die den Innenwinkel in   gleiche Winkel der Größe   teilen. Daraus folgt, dass die Innenwinkel des regelmäßigen  -Sterns alle gleich

 

sind.

Die Seiten des Sterns bilden Schnittpunkte. Jede Seite des Sterns wird von   anderen Seiten geschnitten, denn   Ecken liegen auf dem kürzeren Kreisbogen über der Seite und in jeder der   Ecken treffen 2 andere Seite zusammen, die diese Ecke jeweils mit einer Ecke auf dem längeren Kreisbogen über der betrachteten Seite verbinden. Jede Seite bildet mit den anderen Seiten die Schnittwinkel   und  , wobei   ist. Jeder Schnittpunkt gehört zu 2 Seiten, also ergeben sich insgesamt   Schnittpunkte. Jeder dieser Schnittwinkel kommt  -mal vor, weil jeder Schnittwinkel für jede Seite aus 2 Gegenwinkeln besteht.

Für die Winkel in regelmäßigen Sternen ergeben sich beispielsweise folgende Werte:

Stern Mittelpunktswinkel   Innenwinkel   Schnittwinkel
Gradmaß Bogenmaß Gradmaß Bogenmaß Gradmaß
{p/q}-Stern          
{5/2}-Stern          
{6/2}-Stern          
{8/2}-Stern          
{8/3}-Stern          
{10/2}-Stern          
{10/3}-Stern          
{10/4}-Stern          
{12/2}-Stern          
{12/3}-Stern          
{12/4}-Stern          
{12/5}-Stern          

LängenBearbeiten

Die wichtigsten Kenngrößen regelmäßiger Sterne können mit Hilfe des Bestimmungsdreiecks, das von dem Mittelpunkt und zwei benachbarten Ecken des Polygons gebildet wird, ermittelt werden. Das Bestimmungsdreieck ist gleichschenklig mit dem Spitzenwinkel  , den Basiswinkeln  , den Schenkeln  , der Basis   und der Höhe  . Wird das Bestimmungsdreieck entlang der Höhe (dem Apothema) in zwei rechtwinklige Dreiecke unterteilt, ergeben sich mit dem oben angegebenen Mittelpunktswinkel und den trigonometrischen Funktionen (Sinus und Kosinus, Tangens und Kotangens sowie Sekans und Kosekans) die folgenden Beziehungen zwischen der Seitenlänge  , dem

Umkreisradius   und dem Inkreisradius  :

 
 
 

Haben   und   einen gemeinsamen Teiler  , dann ergeben sich für einen regelmäßigen  -Stern dieselben Längenverhältnisse zwischen  ,   und   wie für einen regelmäßigen  -Stern.

Für manche Werte von   lassen sich explizite Formeln für die Funktionswerte der trigonometrischen Funktionen (siehe Formelsammlung Trigonometrie) und damit für die Längen in den regelmäßigen Sternen angeben, zum Beispiel:

Stern Seitenlänge   gegeben Umkreisradius   gegeben Inkreisradius   gegeben
Umkreisradius Inkreisradius Seitenlänge Inkreisradius Seitenlänge Umkreisradius
{p/q}-Stern            
{5/2}-Stern            
{6/2}-Stern            
{8/2}-Stern            
{8/3}-Stern            
{10/2}-Stern            
{10/3}-Stern            
{10/4}-Stern            
{12/2}-Stern            
{12/3}-Stern            
{12/4}-Stern            
{12/5}-Stern            

SeitenabschnitteBearbeiten

Jede der   Seiten wird von   anderen Seiten geschnitten und in   Abschnitte geteilt. Die Länge dieser Abschnitte kann wie folgt bestimmt werden:

Die Strecke vom Mittelpunkt einer Seite bis zu einem Schnittpunkt oder dem Endpunkt der Seite bildet zusammen mit einem Inkreisradius und der Verbindungsstrecke von Inkreismittelpunkt und dem Schnittpunkt oder dem Endpunkt jeweils ein rechtwinkliges Dreieck. Diese Punkte seien ausgehend vom Mittelpunkt mit   bezeichnet. Die Strecke vom Mittelpunkt einer Seite bis zu einem Schnittpunkt oder Endpunkt   liegt im rechtwinkligen Dreieck dem Winkel   gegenüber, wobei   ist. Das folgt aus der Betrachtung der halbierten Mittelpunktswinkel. Daraus ergibt sich für die Länge   dieser Strecke:

 

Die Länge   des Abschnitts zwischen den Punkten   und   ist dann gleich

 

Nach dem Satz des Pythagoras ist der Abstand zwischen dem Punkt   und dem Mittelpunkt des Sterns gleich

 

Dabei wurde die Beziehung zwischen Tangens und Sekans verwendet (siehe Trigonometrische Funktion - Beziehungen zwischen den Funktionen). Weil der regelmäßige Stern spiegelsymmetrisch und rotationssymmetrisch ist, ist dieser Abstand für alle Seiten jeweils gleich. Daher liegen die Punkte   für gegebenes   mit   auf einem Kreis mit dem Radius  .

Bei gegebenem Umkreisradius   ergeben sich folgende Werte für die Längen   der Strecken, die Längen   der Abschnitte und die Radien  :

Stern Längen   der Strecken Längen   der Abschnitte Radien  
{p/q}-Stern      
                 
{5/2}-Stern 0,224513988 0,951056516 0,224513988 0,726542528 0,381966011 1,000000000
{6/2}-Stern 0,288675135 0,866025404 0,288675135 0,577350269 0,577350269 1,000000000
{7/2}-Stern 0,300256864 0,781831482 0,300256864 0,481574619 0,692021472 1,000000000
{7/3}-Stern 0,107160434 0,279032425 0,974927912 0,107160434 0,171871992 0,695895487 0,246979604 0,356895868 1,000000000
{8/2}-Stern 0,292893219 0,707106781 0,292893219 0,414213562 0,765366865 1,000000000
{8/3}-Stern 0,158512668 0,382683432 0,923879533 0,158512668 0,224170765 0,541196100 0,414213562 0,541196100 1,000000000

Umfang und FlächeninhaltBearbeiten

Der Umfang eines regelmäßigen Sterns besteht aus den jeweils zwei äußeren Abschnitte aller Seiten. Das sind die einzigen Abschnitte, die nicht im Innern des Sterns liegen. Es gibt   solche Abschnitte mit der Länge  . Daraus ergibt sich der Umfang:

 

Der Flächeninhalt, den der regelmäßige Stern überdeckt, ergibt sich aus der Differenz des Flächeninhalts des regelmäßigen Polygons, das durch Verbinden der benachbarten Ecken entsteht, und dem Flächeninhalt der   gleichschenkligen Dreiecke, die jeweils aus einer Seite des äußeren regelmäßigen  -Ecks und zwei äußeren Abschnitten der Seiten des Sterns gebildet werden. Das äußere regelmäßige  -Eck hat die Seitenlänge   und den Flächeninhalt  .

Die gleichschenkligen Dreiecke haben eine Grundseite der Länge  , die Basiswinkel  , die Höhe   und den Flächeninhalt  . Daraus ergibt sich der Flächeninhalt des regelmäßige Sterns:

 

Die inneren Abschnitte aller Seiten des Sterns bilden zusammen den Rand eines regelmäßigen Polygons, das sich im Innern des Sterns befindet. Das innere regelmäßige  -Eck hat die Seitenlänge   und den Flächeninhalt  .

Bei gegebenem Umkreisradius   ergeben sich folgende Werte für den Umfang und die Flächeninhalte:

Stern Umfang Flächeninhalt Flächeninhalt des äußeren regelmäßigen  -Ecks Flächeninhalt des inneren regelmäßigen  -Ecks
{p/q}-Stern        
{5/2}-Stern 7,265425280 1,122569941 2,377641291 0,346893189
{6/2}-Stern 6,928203230 1,732050808 2,598076211 0,866025404
{7/2}-Stern 6,742044663 2,101798046 2,736410189 1,310449647
{7/3}-Stern 9,742536814 1,083959195 2,736410189 0,166918079
{8/2}-Stern 6,627416998 2,343145751 2,828427125 1,656854249
{8/3}-Stern 8,659137602 1,656854249 2,828427125 0,485281374

TeilflächenBearbeiten

Die Seiten eines regelmäßigen  -Sterns zerlegen seine Fläche in Teilflächen, nämlich ein inneres regelmäßiges  -Eck,   gleichschenklige Dreiecke und   Drachenvierecke, also Vierecke mit einer diagonalen Symmetrieachse. Das kann man erkennen, wenn man die Abschnitte aller Seiten des Sterns – ausgehend vom Mittelpunkt der Seiten – Schritt für Schritt hinzufügt. Jeweils zwei innere Abschnitte der Länge   bilden die Seiten des inneren regelmäßigen Polygons. Zusammen mit den nächsten Abschnitten der Länge   bilden sie die Seiten der kongruenten gleichschenkligen Dreiecke. Diese gleichschenkligen Dreiecke haben also die Seitenlängen  ,   und  . Jeweils zwei aufeinander folgende Abschnitte der Längen   und   bilden die Seiten von   kongruenten Drachenvierecken. Diese Drachenvierecke haben also jeweils zwei benachbarte Seiten der Längen   und  .

Betrachtet man die Seitenabschnitte eines regelmäßigen  -Sterns, dann erkennt man, dass die inneren   Abschnitte aller Seiten einen regelmäßigen  -Stern bilden. Für   ergibt sich das innere regelmäßige  -Eck. Dieser regelmäßige  -Stern hat die Seitenlänge   und den Umkreisradius  . Daraus ergibt sich wegen   (siehe Seitenabschnitte) der Flächeninhalt:

 

Dabei wurde das Additionstheorem für den Kosinus und die Definition für den Sekans verwendet.

Entfernt man die äußeren   kongruenten Drachenvierecke mit den Seitenlängen   und   von der Fläche des regelmäßigen  -Sterns, dann bleibt ein regelmäßiger  -Stern übrig. Der gesamte Flächeninhalt dieser Drachenvierecke ist also die Differenz der Flächeninhalte des regelmäßigen  -Sterns und des regelmäßigen  -Sterns. Der Flächeninhalt eines Drachenvierecks ist   dieser Differenz:

 

Dieser Flächeninhalt kann auch mithilfe der Längen der Diagonalen des Drachenvierecks berechnet werden. Die Länge der Diagonalen, die auf der Symmetrieachse liegt, ist die Differenz der Radien   und  . Die andere Diagonale verläuft orthogonal und bildet mit zwei Radien   ein gleichschenkliges Dreieck. Diese Diagonale liegt im gleichschenkligen Dreieck dem Mittelpunktswinkel   gegenüber, hat also die Länge  . Daraus ergibt sich der Flächeninhalt des Drachenvierecks:

 

Für den Grenzfall   ergibt sich der Flächeninhalt der gleichschenkligen Dreiecke, die mit dem inneren regelmäßigen  -Eck jeweils eine Seite gemeinsam haben. Er beträgt

 

Darstellung mit Koordinaten und VektorenBearbeiten

 
Die Ecken auf dem Umkreis eines regelmäßigen Sterns und die entsprechenden Winkel bezogen auf den Mittelpunkt.

Kartesische KoordinatenBearbeiten

Die Ecken   eines regelmäßigen  -Sterns entsprechen den Ecken eines regelmäßigen  -Ecks. Sie können mit kartesischen Koordinaten dargestellt werden. Dabei kann der Einheitskreis als Umkreis mit dem Radius   genommen werden. Dann ist der Mittelpunkt gleich dem Koordinatenursprung und die Ecke   hat die Koordinaten

 

Die Seiten   dieses regelmäßigen  -Sterns sind dann zweidimensionale Richtungsvektoren:

 

Jede der   Seiten wird von   anderen Seiten geschnitten (siehe Seitenabschnitte). Die Schnittpunkte haben folgende kartesische Koordinaten:

 
 

Der Radius   ist der Abstand der Schnittpunkte vom Mittelpunkt des Sterns.

PolarkoordinatenBearbeiten

Zur Berechnung der Eckpunkte eines regelmäßigen Sterns können die komplexen Lösungen der Kreisteilungsgleichung   verwendet werden. Die Polarkoordinaten   der Eckpunkte eines regelmäßigen  -Sterns, dem Koordinatenursprung als Mittelpunkt und dem Umkreisradius   haben so die einfache Form

 

Für die Schnittpunkte der Seiten ergeben sich folgende Polarkoordinaten:

 
 

Der Radius   ist der Abstand der Schnittpunkte vom Mittelpunkt des Sterns.

SymmetrienBearbeiten

Die Symmetriegruppe eines regulären  -Sterns ist die Diedergruppe  . Die Diedergruppe weist die Ordnung   auf und besteht aus

Ist   gerade, dann verläuft die eine Hälfte der Symmetrieachsen durch zwei gegenüberliegende Ecken und die andere Hälfte durch zwei Mittelpunkte gegenüberliegender Seiten. Ist   ungerade, dann verlaufen alle Symmetrieachsen durch eine Ecke und den Mittelpunkt der gegenüberliegenden Seite.

Jeder reguläre Stern mit gerader Eckenzahl ist auch punktsymmetrisch bezüglich seines Mittelpunkts.

Interpretationen des SternpolygonsBearbeiten

 
Drei mögliche Interpretationen des {5/2}-Sternpolygons.

Da die Definition des Sternpolygons aus der kombinatorischen Geometrie und nicht aus der euklidischen Geometrie stammt, hat man genau genommen bei einem Sternpolygon noch keinen geometrischen Stern im Sinne der euklidischen Geometrie, sondern ein Objekt aus der Graphentheorie kanonisch in die euklidische Ebene eingebettet. Dies wird klar, wenn man sich fragt, was genau die Ecken, Kanten und die Fläche des Objektes sind, und was man unter einem geometrischen Stern verstehen will.

Diese „Interpretationsfreiheit“ des Sternpolygons als geometrischen Stern kann man gut im linken Bild erkennen: Der gelbe Stern ist der geometrische Stern, daneben das flächenlose zugehörige Sternpolygon, dann noch zwei weitere sinnvolle Interpretationen des Sternpolygons als mathematischer Stern. Der rote Stern ist eine typische Interpretation in der Theorie der Pflasterungen. Die beiden mittleren Sterne haben je 5 Ecken und 5 Kanten, der gelbe und der grüne Stern aber je 10 Ecken und 10 bzw. 15 Kanten. Der gelbe Stern hat die Kanten mit der Parity-Umlaufregel definiert, der grüne Stern seine Flächen mit der Parity-Umlaufregel, die sich aus der Konstruktionsvorschrift des Sternpolygons ergibt.

Geometrische KenngrößenBearbeiten

 
Der halbe Innenwinkel   (gelb), der halbe Mittelpunktswinkel   (magenta), der Umkreisradius  (blau und cyan) und der Radius   (rot) eines Sterns. Die Spitze ist schwarz gezeichnet.

Ist der halbe Mittelpunktswinkel  , der Umkreisradius   und der Radius   des Sterns gegeben, dann gilt aufgrund der beiden Dreiecksverhältnisse   und nach dem Sinussatz  , also  . Nach dem Satz des Pythagoras beträgt die Kantenlänge des so konstruierten Sterns   und sein Flächeninhalt ist  .

BeispieleBearbeiten

Ein klassischer Fall, der auf regelmäßige nicht-Sternpolygone führt, ist der, dass man diese Kantengeraden genau mittig zwischen Spitzen des Sterns legt – siehe beispielsweise die Geometrie des Stern von Verginas (künstlerische Verschönerung eines 16-zackiggen Sterns als Sonnensymbol der Antike) oder des 8-zackigen Sternberger Sterns (Wappenfigur aus dem Mittelalter). Weitere Beispiele sind der 3-zackige Mercedes-Stern (im Logo dieser Automarke als ebener Stern) mit Spitzenwinkel von 360°/18 – und somit „enthalten“ im  -Sternpolygon, der 4-zackige Nato-Stern (abgeleitet aus einer 4-strahligen Kompassrose) oder der 6-zackige Stern im Wappen von Tamins (Gemeinde in der Schweiz) mit einem Spitzenwinkel von genau 45°. Hier noch ein 8-strahliger Stern einer alten Kompassrose – sehr gut lassen sich hier Umkreis und Inkreis erkennen und (im Rahmen der Bildgenauigkeit)   zu   bestimmen.

In manchen Nationalflaggen werden regelmäßige Sterne als Flaggensymbole verwendet, die kein  -Sternpolygon (Pentagramm) sind. Wenn man die Formel oben umstellt, erhält man allgemein

 

und im Fall   somit die Ungleichung

 .

Für eine große Anzahl   von Ecken ist   eine gute Approximation für den Spitzenwinkel. Für gerade   nähern sich die Winkel und Längenverhältnisse eines solchen Sterns einem  -Sternpolygon.

AsymptotikBearbeiten

Kreis als GrenzformBearbeiten

Für wachsende Seitenzahl   und konstantes   nähert sich die Form eines regelmäßigen  -Ecks bei konstantem Umkreisradius immer mehr einem Kreis an. Das Verhältnis von Umfang und Umkreisradius strebt dabei gegen den Grenzwert

 .

Das Verhältnis von der Summe der Seitenlängen und Umkreisradius nähert sich

 .

Das Verhältnis von Flächeninhalt und dem Quadrat des Umkreisradius strebt für wachsendes   und konstantes   entsprechend gegen den Grenzwert

 .

Der formale Beweis kann mit dem Satz von de L’Hospital geführt werden (siehe Regelmäßiges Polygon - Konvergenz).

Das gilt genauso für den Inkreisradius, denn für wachsendes   und konstantes   nähert sich der Inkreisradius dem Umkreisradius an: Aus   folgt  .

KonvergenzBearbeiten

Um die Konvergenz zu bestimmen, wird statt   die reelle Variable   verwendet und die Grenzwerte der Funktionen für den Flächeninhalt und für den Umfang hergeleitet. Wichtig ist hier, dass diese Funktionen und ihre Faktoren (oder Quotienten) differenzierbar sind. Es wird angenommen, dass   etwa proportional zu   ist, nämlich   mit reellen Zahlen   und  .

UmfangBearbeiten

Für den Umfang ergibt sich der Grenzwert

 

Dabei wurde das Additionstheorem für den Tangens und die Beziehung zwischen Tangens und Sekans verwendet (siehe Trigonometrische Funktion - Beziehungen zwischen den Funktionen).

Für   und   zum Beispiel, also die Sterne  ,  ,  ,  , nähert sich der Umfang dem Wert  . Das ist  -mal der Umfang des Umkreises.

FlächeninhaltBearbeiten

Für den Flächeninhalt ergibt sich für   der Grenzwert

 

Der Flächeninhalt nähert sich dann also dem Flächeninhalt des Umkreises.

Für  , also  , ergibt sich der Grenzwert

 

Dabei wurden die Grenzwerte   und   verwendet (siehe Regelmäßiges Polygon - Konvergenz bei gegebenem Umkreisradius). Nach dem Satz von de L’Hospital ergibt sich der Grenzübergang im Unendlichen wie folgt:

 

Für   und  , also die Sterne  ,  ,  ,  , nähert sich der Umfang dem Wert  . Das ist   vom Flächeninhalt des Umkreises.

Für   und  , also die Sterne  ,  ,  ,  , nähert sich der Umfang dem Wert  . Das ist der halbe Flächeninhalt des Umkreises.

Graphentheoretische EigenschaftenBearbeiten

Aus einem regelmäßigen Stern kann ein Graph erzeugt werden, sodass jeder Eckpunkt und jeder Schnittpunkt einem Knoten, jeder Seitenabschnitt einer Kante und jede Teilfläche einer Fläche des Graphen entspricht. Der Stern hat   Eckpunkte und   Schnittpunkte, weil jede der   Seiten von   anderen Seiten geschnitten wird und jeder Schnittpunkt zu 2 Seiten gehört. Der Graph hat also   Knoten. Jede Seite des Sterns wird in   Abschnitte geteilt (siehe Seitenabschnitte). Die Anzahl der Seitenabschnitte und damit die Anzahl der Kanten des Graph ist also  . Nach dem Eulerschen Polyedersatz ergibt sich daraus die Anzahl der Flächen:  . Dabei wird die äußere Fläche des Graphen mitgezählt.

Das kann man auch geometrisch erkennen, indem man die Abschnitte aller Seiten des Sterns – ausgehend vom Mittelpunkt der Seiten – Schritt für Schritt hinzufügt. Nach dem ersten Schritt entsteht das innere regelmäßige Polygon. Bei jedem der   weiteren Schritte entstehen jeweils   gleichschenklige Dreiecke oder   Drachenvierecke. Zusammen mit der äußeren Fläche sind das   Flächen.

Die Knoten des Graphen, die den Eckpunkten des Sterns entsprechen, haben den Knotengrad 2. Die anderen Knoten, die den Schnittpunkten entsprechen, haben den Knotengrad 4. Weil der Grad aller Knoten gerade sind, besitzt der Graph Eulerkreise.

AbbildungenBearbeiten

Sterne und Sternpolygone mit kleinem Schläfli-IndexBearbeiten

Die folgende Übersicht zeigt regelmäßige Sterne und Sternpolygone mit dem Schläfli-Index   für  , also höchstens 9 Ecken. Das Sternpolygon lässt sich – im Gegensatz zum Stern – in einem Linienzug zeichnen.

In dem folgenden Schema sind  -Sterne bzw. Vielecke mit höchstens 16 Ecken dargestellt. Die roten Geraden verlaufen durch regelmäßige Vielecke   bzw. Sterne      usw. mit gleichem  . Die blauen Geraden verlaufen durch regelmäßige Vielecke bzw. Sterne  , die aus den gleichen Sternpolygonen zusammengesetzt sind und daher die gleichen Innenwinkel   besitzen.

 

ProgrammierungBearbeiten

Das folgende Beispiel in der Programmiersprache C# zeigt die Implementierung einer Methode, die einen regelmäßiges Stern zeichnet. Die Parameter der Methode sind p und q, der Umkreisradius, der Drehwinkel und zwei boolesche Variablen, die angeben, ob die Umkreisradien und Inkreisradien oder der Umkreisradius und Inkreisradius gezeichnet werden.[2]

private void PaintRegularStar(int p, int q, float circumRadius, float angle, bool drawRadiuses, bool drawCircles)
{
	// Definiert Farben mit RGB-Werten.
	Color blue = Color.FromArgb(0, 0, 255), white = Color.FromArgb(255, 255, 255), black = Color.FromArgb(0, 0, 0);
	int gcd = GreatestCommonDivisor(p, q); // Berechnet den größten gemeinsamen Teiler von p und q, die Anzahl der Sternpolygone, in die der regelmäszige Stern zerfällt
	int starPolygonCount = p / gcd; // Anzahl der Ecken der Sternpolygone
	PointF[] regularPolygon = new PointF[starPolygonCount];
	for (int j = 0; j < gcd; j++) // for-Schleife mit Index j, die Sternpolygone durchläuft
	{
		for (int i = 0; i < starPolygonCount; i++) // for-Schleife mit Index i, die die Ecken erzeugt
		{
			// Berechnet die Koordinaten der Ecken des regelmäszigen Vielecks
			double centralAngle = 2 * (q * i + j) * Math.PI / p + angle; // Berechnet den Mittelpunktswinkel
			regularPolygon[i] = new PointF((float) (circumRadius * Math.Cos(centralAngle)), (float) (circumRadius * Math.Sin(centralAngle))); // Erzeugt eine Ecke mit den Koordinaten
		}
		graphics.FillPolygon(new SolidBrush(blue), regularPolygon); // Füllt das regelmäszige Sternpolygon mit einer Farbe
	}
	if (drawRadiuses) // Wenn CheckBox gesetzt, dann Radien zeichnen
	{
		for (int j = 0; j < gcd; j++) // for-Schleife mit Index j, die Sternpolygone durchläuft
		{
			for (int i = 0; i < starPolygonCount; i++) // for-Schleife mit Index i, bei jedem Durchlauf wird jeweils 1 Umkreisradius und 1 Inkreisradius gezeichnet
			{
				double centralAngle = 2 * (q * i + j) * Math.PI / p + angle; // Berechnet den Mittelpunktswinkel
				graphics.DrawLine(new Pen(white), 0, 0, (float) (circumRadius * Math.Cos(centralAngle)), (float) (circumRadius * Math.Sin(centralAngle))); // Zeichnet den Umkreisradius
				float inradius = (float) (circumRadius * Math.Cos(q * Math.PI / p)); // Berechnet den Inkreisradius
				centralAngle = (2 * (q * i + j) + 1) * Math.PI / p + angle; // Berechnet den Mittelpunktswinkel
				graphics.DrawLine(new Pen(white), 0, 0, (float) (inradius * Math.Cos(centralAngle)), (float) (inradius * Math.Sin(centralAngle))); // Zeichnet den Inkreisradius
			}
		}
	}
	if (drawCircles) // Wenn CheckBox gesetzt, dann Umkreis und Inkreis zeichnen
	{
		graphics.DrawEllipse(new Pen(black), -circumRadius, -circumRadius, 2 * circumRadius, 2 * circumRadius); // Zeichnet den Umkreis
		float inradius = (float) (circumRadius * Math.Cos(q * Math.PI / p)); // Berechnet den Inkreisradius
		graphics.DrawEllipse(new Pen(black), -inradius, -inradius, 2 * inradius, 2 * inradius); // Zeichnet den Inkreis
	}
}

WeblinksBearbeiten

Commons: Stern – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. Harold Scott MacDonald Coxeter: Introduction to Geometry. 2. Auflage. Wiley, New York 1969, §2.8 (Star Polygons), S. 36–38. (Deutsch: Unvergängliche Geometrie. 2. Auflage. Birkhäuser, Basel 1981.)
  2. C# Helper: Draw a star with a given number of points in C#