Differential (Mathematik)

linearer Anteil des Zuwachses einer Variablen oder einer Funktion

Ein Differential (oder Differenzial) bezeichnet in der Analysis den linearen Anteil des Zuwachses einer Variablen oder einer Funktion und beschreibt einen unendlich kleinen Abschnitt auf der Achse eines Koordinatensystems.[1][2] Historisch war der Begriff im 17. und 18. Jahrhundert der Kern der Entwicklung der Infinitesimalrechnung. Ab dem 19. Jahrhundert wurde die Analysis durch Augustin Louis Cauchy und Karl Weierstraß auf der Grundlage des Grenzwertbegriffes mathematisch korrekt neu aufgebaut, und der Begriff des Differentials verlor für die elementare Differential- und Integralrechnung an Bedeutung.

Besteht eine funktionale Abhängigkeit mit einer differenzierbaren Funktion , dann lautet der grundlegende Zusammenhang zwischen dem Differential der abhängigen Variablen und dem Differential der unabhängigen Variablen

,

wobei die Ableitung von an der Stelle bezeichnet. Anstelle von schreibt man auch oder . Diese Beziehung lässt sich mit Hilfe partieller Ableitungen auf Funktionen mehrerer Variabler verallgemeinern und führt dann auf den Begriff des totalen Differentials.

Differentiale werden heute in verschiedenen Anwendungen in unterschiedlicher Bedeutung und auch mit unterschiedlicher mathematischer Strenge verwendet. Die in Standardschreibweisen wie für Integrale oder für Ableitungen auftretenden Differentiale werden heutzutage üblicherweise als bloßer Notationsbestandteil ohne eigenständige Bedeutung angesehen.

Eine rigorose Definition liefert die in der Differentialgeometrie verwendete Theorie der Differentialformen, wo Differentiale als exakte 1-Formen interpretiert werden. Einen anders gearteten Zugang vermittelt die Nichtstandardanalysis, die den historischen Begriff der Infinitesimalzahl wieder aufgreift und im Sinne der modernen Mathematik präzisiert.

Einordnung Bearbeiten

In seinen 1924 erstmals erschienenen „Vorlesungen über Differential- und Integralrechnung“ schreibt Richard Courant, dass die Idee des Differentials als unendlich kleine Größe keine Bedeutung habe und es deshalb nutzlos sei, die Ableitung als Quotient zweier solcher Quantitäten zu definieren, dass man aber trotzdem versuchen könne, den Ausdruck   als tatsächlichen Quotienten zweier Quantitäten   und   zu definieren. Dafür definiere man zunächst   wie üblich als   und betrachte dann für ein festes   den Zuwachs   als eine unabhängige Variable. (Diese bezeichne man als  .) Dann definiere man  , womit man tautologisch   bekomme.

In modernerer Terminologie kann man das Differential in   als lineare Abbildung vom Tangentialraum   in die reellen Zahlen auffassen. Dem „Tangentialvektor“   wird die reelle Zahl   zugeordnet und diese lineare Abbildung ist per Definition das Differential  . Also   und insbesondere  , woraus sich tautologisch die Beziehung   ergibt.

Das Differential als linearisierter Zuwachs Bearbeiten

Ist   eine reelle Funktion einer reellen Variablen, so bewirkt eine Änderung des Arguments um   von   auf   eine Änderung des Funktionswertes von   auf  ; für den Zuwachs des Funktionswerts gilt also

 .

Ist beispielsweise   eine (affin) lineare Funktion, also  , so folgt  . Das heißt, der Zuwachs des Funktionswerts ist in diesem einfachen Fall direkt proportional zum Zuwachs des Arguments und das Verhältnis   entspricht gerade der konstanten Steigung   von  .

 
Das Differential   als linearer Anteil des Zuwachses  

Bei Funktionen, deren Steigung nicht konstant ist, ist die Situation komplizierter. Ist   an der Stelle   differenzierbar, dann ist die Steigung dort gegeben durch die Ableitung  , wobei diese als Grenzwert des Differenzenquotienten definiert ist:

 .

Betrachtet man nun für   die Differenz zwischen dem Differenzenquotienten und der Ableitung

 ,

so folgt für den Zuwachs des Funktionswertes

 .

In dieser Darstellung wird   zerlegt in einen Anteil  , der linear von   abhängt, und einen Rest, der von höherer als linearer Ordnung verschwindet, in dem Sinne, dass   gilt. Der lineare Anteil des Zuwachses, der deshalb für kleine Werte von   im Allgemeinen einen guten Näherungswert für   darstellt, wird Differential von   genannt und mit   bezeichnet.

Definition Bearbeiten

Es sei   eine Funktion mit Definitionsbereich  . Ist   an der Stelle   differenzierbar und  , dann heißt[3]

 

das Differential von   an der Stelle   zum Argumentzuwachs  . Statt   schreibt man häufig auch  . Gilt  , so schreibt man auch   anstelle von  .

Für ein fest gewähltes   ist das Differential   also eine lineare Funktion, die jedem Argument   den Wert   zuordnet.

Beispielsweise für die identische Funktion  ,   gilt also wegen   die Gleichung   und somit[4] in diesem Beispiel  .

Differentiale höherer Ordnung Bearbeiten

Ist   an der Stelle    -mal differenzierbar ( ) und  , so heißt[5]

 

das Differential  -ter Ordnung von   an der Stelle   zum Argumentzuwachs  . In diesem Produkt bezeichnet   die  -te Ableitung von   an der Stelle   und   die  -te Potenz der Zahl  .

Die Bedeutung dieser Definition wird bei Courant[6] wie folgt erklärt. Wenn man sich   fest gewählt denkt, und zwar denselben Wert   für verschiedene  , also   festgehalten, dann ist   eine Funktion von  , von der man wieder das Differential   bilden kann (s. Abb.). Das Ergebnis ist das zweite Differential  , man erhält es, indem man in   (dem Zuwachs von  ) den Term in Klammern durch seinen Linearteil   ersetzt, womit also   ist. Auf analoge Weise kann man die Definition von Differentialen höherer Ordnung motivieren. Es gilt dann entsprechend z. B.   und allgemein  .

Für ein fest gewähltes   ist das Differential   also wieder eine (für   nicht-lineare) Funktion, die jedem Argument   den Wert   zuordnet.

Rechenregeln Bearbeiten

Unabhängig von der verwendeten Definition gelten für Differentiale die folgenden Rechenregeln. Im Folgenden bezeichnen   die unabhängige Variable,   abhängige Variablen beziehungsweise Funktionen und   eine beliebige reelle Konstante. Die Ableitung von   nach   wird   geschrieben. Dann ergeben sich die nachfolgenden Rechenregeln aus der Beziehung

 

und den Ableitungsregeln. Die folgenden Rechenregeln für Differentiale von Funktionen   sind so zu verstehen, dass jeweils die nach Einsetzen der Argumente   erhaltenen Funktionen übereinstimmen sollen. Die Regel   zum Beispiel besagt, dass man in jedem   die Identität   hat und dies bedeutet nach Definition, dass für alle reellen Zahlen   die Gleichung   gelten soll.

Konstante und konstanter Faktor Bearbeiten

  •   und
  •  

Addition und Subtraktion Bearbeiten

  •   ; und
  •  

Multiplikation Bearbeiten

auch Produktregel genannt:

  •  

[anm. 1]

Division Bearbeiten

  •  

[anm. 2]

Kettenregel Bearbeiten

  • Ist   abhängig von   und   von  , also   und  , dann gilt
 .

Beispiele Bearbeiten

  • Für   und   gilt   bzw.  . Es folgt
 .
  • Für   und   gilt   und  , also
 .

Erweiterung und Varianten Bearbeiten

Anstatt   finden sich folgende Symbole, die Differentiale bezeichnen:

  • Mit   (eingeführt von Condorcet, Legendre und dann Jacobi sieht man es in alter französischer Schreibschrift, oder als eine Variante des kursiven kyrillischen d) wird ein partielles Differential bezeichnet.
  • Mit   (dem griechischen kleinen Delta) wird eine virtuelle Verschiebung, die Variation eines Ortsvektors bezeichnet. Sie hängt also mit dem partiellen Differential nach den einzelnen Raumdimensionen des Ortsvektors zusammen.
  • Mit   wird ein inexaktes Differential bezeichnet.

Totales Differential Bearbeiten

Das totale Differential oder vollständige Differential einer differenzierbaren Funktion   in   Variablen ist definiert durch

 .

Dies ist wieder interpretierbar als der lineare Anteil des Zuwachses. Eine Änderung des Arguments um   bewirkt eine Änderung des Funktionswertes um  , welche zerlegbar ist als

 ,

wobei der erste Summand das Skalarprodukt der beiden  -elementigen Vektoren   und   darstellt und der Rest von höherer Ordnung verschwindet, also  .

Virtuelle Verschiebung Bearbeiten

Eine virtuelle Verschiebung   ist eine fiktive infinitesimale Verschiebung des  -ten Teilchens, die mit Zwangsbedingungen verträglich ist. Die Abhängigkeit von der Zeit wird nicht betrachtet. Aus dem totalen Differential    einer Funktion   entsteht die gesuchte virtuelle Änderung  . Der Begriff „instantan“ ist dadurch mathematisiert.

Die   holonomen Zwangsbedingungen,    ,  werden durch Verwendung von   sogenannter generalisierter Koordinaten   erfüllt:

 

Die holonomen Zwangsbedingungen werden also durch Auswahl und entsprechende Reduzierung der generalisierten Koordinaten explizit eliminiert.

Stochastische Analysis Bearbeiten

In der stochastischen Analysis wird die Differentialschreibweise häufig angewendet, etwa zur Notation stochastischer Differentialgleichungen; sie ist dann stets als Kurzschreibweise für eine entsprechende Gleichung von Itō-Integralen aufzufassen. Ist beispielsweise   ein stochastischer Prozess, der bezüglich eines Wiener-Prozesses   Itō-integrierbar ist, dann wird die durch

 

gegebene Gleichung für einen Prozess   in Differentialform als   notiert. Die oben genannten Rechenregeln für Differentiale sind jedoch im Fall stochastischer Prozesse mit nichtverschwindender quadratischer Variation gemäß der Itō-Formel zu modifizieren.

Heutiger Zugang: Differentiale als 1-Formen Bearbeiten

Die oben gegebene Definition des Differentials   entspricht in heutiger Terminologie dem Begriff der exakten 1-Form  .

Es sei   eine offene Teilmenge des  . Eine 1-Form oder Pfaffsche Form   auf   ordnet jedem Punkt   eine Linearform   zu. Derartige Linearformen heißen Kotangentialvektoren; sie sind Elemente des Dualraumes   des Tangentialraumes  . Eine pfaffsche Form   ist also eine Abbildung

 

Das totale Differential oder die äußere Ableitung   einer differenzierbaren Funktion   ist die pfaffsche Form, die folgendermaßen definiert ist: Ist   ein Tangentialvektor, so ist:   also gleich der Richtungsableitung von   in Richtung  . Ist also   ein Weg mit   und  , so ist

 

Mit Hilfe des Gradienten und des Standard-Skalarproduktes lässt sich das totale Differential von   durch

 

darstellen.

Für   erhält man insbesondere das Differential   von Funktionen  .

Differentiale in der Integralrechnung Bearbeiten

Anschauliche Erklärung Bearbeiten

Um den Flächeninhalt eines Bereiches zu berechnen, der von dem Graphen einer Funktion  , der  -Achse und zwei dazu senkrechten Geraden   und   eingeschlossen wird, unterteilte man die Fläche in Rechtecke der Breite  , die „unendlich schmal“ gemacht werden, und der Höhe  . Ihr jeweiliger Flächeninhalt ist das „Produkt“

 ,

der gesamte Flächeninhalt also die Summe

 

wobei hier   wieder eine endliche Größe ist, die einer Unterteilung des Intervalls   entspricht. Siehe genauer: Mittelwertsatz der Integralrechnung. Es gibt im Intervall   einen festen Wert  , dessen Funktionswert multipliziert mit der Summe der endlichen   des Intervalls   den Wert des Integrals dieser einen stetigen Funktion wiedergibt:

 

Das Gesamtintervall   des Integrals muss nicht gleichmäßig unterteilt sein. Die Differentiale an den unterschiedlichen Unterteilungsstellen können verschieden groß gewählt sein, die Wahl der Unterteilung des Integrationsintervalls hängt oft von der Art des Integrationsproblems ab. Zusammen mit dem Funktionswert innerhalb des „differentiellen“ Intervalls (beziehungsweise des Maximal- und Minimalwerts darinnen entsprechend Ober- und Untersumme) bildet sich eine Flächengröße; man macht den Grenzwertübergang in dem Sinne, dass man die Unterteilung von   immer feiner wählt. Das Integral ist eine Definition für eine Fläche mit Begrenzung durch ein Kurvenstück.

Formale Erklärung Bearbeiten

Es sei   eine integrierbare Funktion mit Stammfunktion  . Das Differential

 

ist eine 1-Form, die nach den Regeln der Integration von Differentialformen integriert werden kann. Das Ergebnis der Integration über ein Intervall   ist genau das Lebesgue-Integral

 .

Spezielle Differentiale Bearbeiten

Im Zusammenhang mit den folgenden Integralen hat das jeweilige Differential eine besondere Bezeichnung und auch Bedeutung:

Die Differentiale hängen dabei vom verwendeten Koordinatensystem ab.

Differentiale als Rechenhilfe Bearbeiten

Indem man mit einem Differential wie mit einer Variablen rechnet – was streng genommen nicht zulässig ist – vereinfachen sich manche Rechnungen. Dieses Vorgehen wird insbesondere in der Physik angewendet. Aber auch in der Mathematik liefert diese Methode oft die Vorlage für exakte Beweise – zum Beispiel beim Beweis der Kettenregel.

Beispiel 1 (Integration durch Substitution) Bearbeiten

Das Integral

 

soll berechnet werden. Die Substitution   ergibt die Ableitung   und somit für die Differentiale  . Damit erhält man

  mit  .

Beispiel 2 (Separation der Variablen) Bearbeiten

Die Differentialgleichung

 

mit der Anfangsbedingung   soll gelöst werden. Setzt man   und  , so erhält man

 .

Multipliziert man nun beide Seiten mit dem Differential   und trennt die Variablen, indem man sie auf jeweils eine Seite der Gleichung bringt, so ergibt sich

 .

Integration und Berücksichtigung der Anfangsbedingung ergeben die Lösung:

 
 
 
 .

Historisches Bearbeiten

Gottfried Wilhelm Leibniz verwendet erstmals in einem Manuskript 1675 in der Abhandlung Analysis tetragonistica das Integralzeichen, er schreibt nicht   sondern  . Am 11. November 1675 verfasste Leibniz einen Aufsatz mit dem Titel „Beispiele zur umgekehrten Tangentenmethode“ und hier kommt neben   zum ersten Mal   vor, ebenso statt   die Schreibweise  .[7]

In der modernen Fassung dieses Zugangs zur Integralrechnung nach Bernhard Riemann ist das „Integral“ ein Grenzwert der Flächeninhalte endlich vieler Rechtecke endlicher Breite für immer feinere Unterteilungen des „ -Bereichs“.

Deshalb ist das erste Symbol im Integral ein stilisiertes S für „Summe“. „Utile erit scribi   pro omnia (Es wird nützlich sein,   anstatt omnia zu schreiben) und ∫ l um die Summe einer Gesamtheit ∫ zu bezeichnen … Hier zeigt sich eine neue Gattung des Kalküls; ist dagegen   gegeben, so bietet sich ein entgegengesetzter Kalkül mit der Bezeichnung  , wie nämlich ∫ die Abmessungen vermehrt, so vermindert sie d. ∫ bedeutet aber die Summe, d die Differenz.“ schreibt Leibniz am 29. Oktober 1675 in einer Untersuchung, in der er die Cavalierischen Gesamtheiten verwendet. In der späteren Niederschrift von 11. November 1675 geht er von der Schreibweise   zu   über, er verzeichnet in einer Fußnote „  ist gleich  “, in derselben Rechnung kommt auch die Formel   vor.[8] Omnia steht dabei für omnia l und wird in dem geometrisch orientierten Flächenberechnungsverfahren von Bonaventura Cavalieri verwendet. Die zugehörige gedruckte Veröffentlichung Leibniz’ ist De geometria recondita aus dem Jahr 1686. Leibniz gab sich mit der Bezeichnungsweise Mühe, „um die Rechnung kalkülmäßig einfach und zwangsläufig zu machen.“[9][10][11]

Blaise Pascals Betrachtungen zum Viertelkreisbogen: Quarts de Cercle Bearbeiten

 
Das charakteristische Dreieck

Als Leibniz als junger Mann 1673 in Paris war, empfing er eine entscheidende Anregung durch eine Betrachtung Pascals in dessen 1659 erschienener Schrift Traité des sinus des quarts de cercle (Abhandlung über den Sinus des Viertelkreises).[12] Er sagt, er habe darin ein Licht gesehen, das der Autor nicht bemerkt habe. Es handelt sich um folgendes (in moderner Terminologie geschrieben, siehe Abbildung):

Um das statische Moment

 

des Viertelkreisbogens bezüglich der x-Achse zu bestimmen[13], schließt Pascal aus der Ähnlichkeit der Dreiecke mit den Seiten

 

und

 

dass ihr Seitenverhältnis gleich ist

 

und somit

 

so dass

  [14]

gilt. Leibniz bemerkte nun – und dies war das „Licht“, das er sah –, dass dieses Verfahren nicht auf den Kreis beschränkt ist, sondern allgemein für jede (glatte) Kurve gilt, sofern der Kreisradius a durch die Länge der Kurvennormalen (die reziproke Krümmung, der Radius des Krümmungskreises) ersetzt wird. Das infinitesimale Dreieck

 

ist das charakteristische Dreieck (Es findet sich auch bei Isaac Barrow zur Tangentenbestimmung.[15]) Es ist bemerkenswert, dass die spätere Leibniz’sche Symbolik der Differentialrechnung (dx, dy, ds) gerade dem Standpunkt dieser „verbesserten Indivisibilienvorstellung“ entspricht.[16]

Ähnlichkeit Bearbeiten

Alle Dreiecke aus einem Abschnitt   der Tangente zusammen mit den zur jeweiligen x- und y-Achse parallelen Stücken   und   bilden mit dem Dreieck aus Krümmungskreisradius a, Subnormaler   und Ordinate y ähnliche Dreiecke und behalten deren Verhältnisse entsprechend der Steigung der Tangente an den Krümmungskreis in diesem Punkt auch bei, wenn der Grenzwertübergang gemacht wird. Das Verhältnis von   ist ja genau die Steigung von  . Deshalb kann man für jeden Krümmungskreis an einem Punkt der Kurve dessen (charakteristische) Proportionen im Koordinatensystem auf die Differentiale dort übertragen, insbesondere wenn sie als infinitesimale Größen aufgefasst werden.[17]

Nova methodus 1684 Bearbeiten

 
Tafel XII
 
Erste inhaltliche Seite

Neue Methode der Maxima, Minima sowie der Tangenten, die sich weder an gebrochenen, noch an irrationalen Größen stößt, und eine eigentümliche darauf bezügliche Rechnungsart. (Leibniz (G. G. L.), Acta eruditorum 1684)

Leibniz erläutert hier sehr kurz auf vier Seiten seine Methode. Er wählt ein beliebiges unabhängiges festes Differential (hier dx, s. Abb. r. o.) und gibt die Rechenregeln, wie unten, für die Differentiale an, beschreibt, wie man sie bildet.

Danach gibt er die Kettenregel an:

„So kommt es, daß man zu jeder vorgelegten Gleichung ihre Differentialgleichung aufschreiben kann. Dies geschieht, indem man für jedes Glied (d. h. jeden Bestandteil, der durch bloße Addition oder Subtraktion zur Herstellung der Gleichung beiträgt) einfach das Differential des Gliedes einsetzt, für eine andere Größe jedoch (die nicht selbst ein Glied ist, sondern zur Bildung eines Gliedes beiträgt) ihr Differential anwendet, um das Differential des Gliedes selbst zu bilden, und zwar nicht ohne weiteres, sondern nach dem oben vorgeschriebenen Algorithmus.“[18]

Das ist aus heutiger Sicht ungewohnt, weil er unabhängige und abhängige Differentiale gleich und einzeln, und nicht wie abschließend benötigt, den Differentialquotienten aus abhängiger und unabhängiger Größe betrachtet. Andersherum, wenn er eine Lösung angibt, ist die Bildung des Differentialquotienten möglich. Er behandelt die gesamte Bandbreite der rationalen Funktionen. Es folgen ein formales kompliziertes Beispiel, ein dioptrisches der Lichtbrechung (Minimum),[anm. 3] ein leicht lösbares geometrisches, mit verwickelten Abstandsverhältnissen,[anm. 4] und eines, das den Logarithmus behandelt.

Weitere Zusammenhänge werden wissenschaftlich historisch bei ihm aus dem Zusammenhang mit früheren und späteren Arbeiten zu dem Thema betrachtet, die teils nur handschriftlich oder in Briefen und nicht veröffentlicht vorliegen. In Nova methodus 1684 steht zum Beispiel nicht, dass für das unabhängige dx gilt dx = const. und ddx=0. In weiteren Beiträgen behandelt er das Thema bis zu „Wurzeln“ und Quadraturen von unendlichen Reihen.

 
Grafische Veranschaulichung des Beauneschen Problems

Das Verhältnis von Unendlichklein und bekanntes Differential (= Größe) beschreibt Leibniz:

„Es ist auch klar, daß unsere Methode die transzendenten Linien beherrscht, die sich nicht auf die algebraische Rechnung zurückführen lassen oder von keinem bestimmten Grade sind, und zwar gilt das ganz allgemein, ohne besondere, nicht immer zutreffende Voraussetzungen. Man muß nur ein für allemal festhalten, daß eine Tangente zu finden so viel ist wie eine Gerade zeichnen, die zwei Kurvenpunkte mit unendlich kleiner Entfernung verbindet, oder eine verlängerte Seite des unendlicheckigen Polygons, welches für uns mit der Kurve gleichbedeutend ist. Jene unendlich kleine Entfernung läßt sich aber immer durch irgendein bekanntes Differential, wie dv oder durch eine Beziehung zu demselben ausdrücken, d. h. durch eine gewisse bekannte Tangente.“[18]

Für die transzendente Linie wird die Zykloide als Nachweis herangezogen.

Als Anhang erklärt er 1684 die Lösung eines Problems, das Florimond de Beaune Descartes stellte, und das er nicht löste. Das Problem sieht vor, dass eine Funktion (w, der Linie WW in Tafel XII) gefunden wird, deren Tangente (WC) die x-Achse immer so schneidet, dass der Abschnitt zwischen Schnittpunkt der Tangente mit der x Achse und dessen Abstand zur zugehörigen Abszisse x, dort wählt er dx immer gleich b, konstant, er nennt es hier a, ist. Diese Proportionalität vergleicht er mit der arithmetischen Reihe und der geometrischen und erhält als Abszisse die Logarithmen und als Ordinate die Numeri. „Es werden also die Ordinaten w“ (Wertzunahme) „den dw“ (Steigungszunahme)", ihren Inkrementen oder Differenzen, proportional, …" Er gibt die Logarithmusfunktion als Lösung an: „… wenn die w die Numeri sind, so sind die x die Logarithmen.“: w=a/b dw, oder w dx = a dw. Dies erfüllt

 

oder

 

Cauchys Differentialbegriff Bearbeiten

In den 1980er Jahren fand in Deutschland eine Auseinandersetzung statt, inwieweit die Grundlegung der Analysis bei Cauchy logisch einwandfrei ist. Detlef Laugwitz versucht mit Hilfe einer historischen Lesart Cauchys, den Begriff unendlich kleiner Größen für seine  -Zahlen fruchtbar zu machen, findet aber daraus resultierend bei Cauchy Unstimmigkeiten. Detlef Spalt korrigiert den (ersten!) historischen Lesansatz der cauchyschen Arbeiten und fordert die Verwendung von Begriffen aus Cauchys Zeit und nicht heutigen Begriffen zum Nachweis seiner Sätze und kommt zu dem Ergebnis, dass Cauchys Grundlegung der Analysis logisch einwandfrei ist, jedoch bleiben weiterhin die Fragen nach der Behandlung unendlich kleiner Größen offen.

Die Differentiale bei Cauchy sind endlich und konstant   (  endlich). Der Wert der Konstanten ist nicht näher bestimmt.

  ist bei Cauchy unendlich klein und veränderlich.

Die Beziehung zu   ist  , wobei   endlich und   infinitesimal (unendlich klein) ist.

Ihr geometrisches Verhältnis ist als

 

bestimmt. Dieses Verhältnis unendlich kleiner Größen, oder genauer die Grenze geometrischer Differenzenverhältnisse abhängiger Zahlgrößen, einen Quotienten, kann Cauchy auf endliche Größen übertragen.

Differentiale sind endliche Zahlgrößen, deren geometrische Verhältnisse streng gleich den Grenzen der geometrischen Verhältnisse sind, welche aus den unendlich kleinen Zuwächsen der vorgelegten unabhängigen Veränderlichen oder der Veränderlichen der Funktionen gebildet sind. Cauchy hält es für wichtig Differentiale als endliche Zahlgrößen zu betrachten.

Der Rechner bedient sich der Unendlichkleinen als Vermittelnden, welche ihn zu der Kenntnis der Beziehung führen müssen, die zwischen den endlichen Zahlgrößen bestehen; und nach Cauchys Meinung dürfen die Unendlich kleinen in den Schlussgleichungen, wo ihre Anwesenheit sinnlos, zwecklos und nutzlos bliebe, nie zugelassen werden. Außerdem: Wenn man die Differentiale als beständig sehr kleine Zahlgrößen betrachtete, dann gäbe man dadurch den Vorteil auf, der darin besteht, dass man unter den Differentialen von mehreren Veränderlichen das eine als Einheit nehmen kann. Denn um eine klare Vorstellung einer beliebigen Zahlgröße auszubilden, ist es wichtig, sie auf die Einheit ihrer Gattung zu beziehen. Es ist also wichtig, unter den Differentialen eine Einheit auszuwählen.

Insbesondere fällt für Cauchy die Schwierigkeit weg, höhere Differentiale zu definieren. Denn Cauchy setzt   nachdem er die Rechenregeln der Differentiale durch Übergang zu den Grenzen erhalten hat. Und da das Differential einer Funktion der Veränderlichen   eine andere Funktion dieser Veränderlichen ist, kann er   mehrmals differenzieren und erhält in dieser Weise die Differentiale verschiedener Ordnungen.

 
 
 
[19]

Anmerkungen Bearbeiten

  1. Wenn man durch uv dividiert, wird die Symmetrie plus zu minus bei der Division deutlicher:
     
  2. Wenn man durch   dividiert, wird die Symmetrie minus zu plus bei der Multiplikation deutlicher:
     
  3. Grafik Tafel XII, links Mitte
  4. Grafik Tafel XII unten links

Siehe auch Bearbeiten

Literatur Bearbeiten

  • Gottfried Leibniz, Sir Isaac Newton: Über die Analysis des Unendlichen – Abhandlung über die Quadratur der Kurven. Verlag Harri Deutsch, ISBN 3-8171-3162-3 (Ostwalds Klassiker der exakten Wissenschaften, Band 162).
  • Oskar Becker: Grundlagen der Mathematik. Suhrkamp Verlag, ISBN 3-518-07714-7.
  • Detlef Spalt: Die Vernunft im Cauchy-Mythos. Verlag Harri Deutsch, ISBN 3-8171-1480-X (Spalt problematisiert die Übernahme moderner Begriffe auf frühere Analysis, stellt fest, dass Cauchys Aufbau der Analysis logisch einwandfrei ist, thematisiert benachbarte Begriffe und lässt Cauchy virtuelle Diskussionen mit wesentlich jüngeren Mathematikern führen über deren begriffliche Genauigkeit, z. B. Abel etc.)
  • K. Popp, E. Stein (Hrsg.): Gottfried Wilhelm Leibniz, Philosoph, Mathematiker, Physiker, Techniker. Schlütersche, Hannover 2000, ISBN 3-87706-609-7.
  • Henk Bos: Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus. In: Archive for History of Exact Sciences, 14, 1974, S. 1–90. Heftig diskutierte Veröffentlichung aus den 1970ern, um Kontinuum und Unendlichkeit.
  • Courant: Vorlesungen über Differential- und Integralrechnung. Springer, 1971
  • Joos, Kaluza: Höhere Mathematik für den Praktiker. in älteren Auflagen so z. B. 1942, Johann Ambriosius Barth.
  • Duden Rechnen und Mathematik. Dudenverlag, 1989.
  • K. Endl, W. Luh: Analysis. Band 1. Akademische Verlagsgesellschaft, 1972, ISBN 3-400-00185-6.
  • K. Endl, W. Luh: Analysis. Band 2. Akademische Verlagsgesellschaft, 1973, ISBN 3-400-00206-2.

Einzelnachweise Bearbeiten

  1. Jürgen Schmidt: Basiswissen Mathematik. Springer-Verlag, 2014, ISBN 978-3-662-43545-8, S. 307.
  2. eingeschränkte Vorschau in der Google-Buchsuche
  3. Herbert Dallmann, Karl-Heinz Elster: Einführung in die höhere Mathematik. Band 1. 3. Auflage. Gustav Fischer Verlag, Jena 1991, ISBN 3-334-00409-0, S. 370.
  4. Herbert Dallmann, Karl-Heinz Elster: Einführung in die höhere Mathematik. Band 1. 3. Auflage. Gustav Fischer Verlag, Jena 1991, ISBN 3-334-00409-0, S. 371.
  5. Herbert Dallmann, Karl-Heinz Elster: Einführung in die höhere Mathematik. Band 1. 3. Auflage. Gustav Fischer Verlag, Jena 1991, ISBN 3-334-00409-0, S. 381.
  6. Courant, op.cit., S. 107.
  7. Anmerkungen Kowalewskis zu Über die Analysis des Unendlichen von Leibniz.
  8. Karlson: Vom Zauber der Zahlen. Ullstein, 1954, S. 574.
  9. K. Popp, E. Stein: Gottfried Wilhelm Leibniz. Philosoph, Mathematiker, Physiker, Techniker. Schlütersche, Hannover 2000, ISBN 3-87706-609-7, S. 50
  10. Thomas Sonar: 3000 Jahre Analysis: Geschichte – Kulturen – Menschen. 2. Auflage. Springer-Verlag, 2016, ISBN 978-3-662-48917-8, S. 408.
  11. eingeschränkte Vorschau in der Google-Buchsuche
  12. franz. Text, Fig. 29 ist am Ende des Buchs
  13. Bei konstanter Dichte deckt sich die Teilmasse   mit dem Bogen   an dieser Stelle und   entsprechend.
  14.   ist die Grenze für die Unabhängige s, a die entsprechend umgerechnete für den „Parameter“ x. Man sieht auch anschaulich in der Abbildung, dass man mit dem Viertelbogen eine Radiuslänge auf der x-Achse durchläuft und umgekehrt.
  15. Barrow. [2] 2). In: Heinrich August Pierer, Julius Löbe (Hrsg.): Universal-Lexikon der Gegenwart und Vergangenheit. 4. Auflage. Band 2: Aug …–Bodmer. Altenburg 1857, S. 349–350 (Digitalisat. zeno.org).
  16. Oskar Becker: Grundlagen der Mathematik. suhrkamp.
  17. Reinhard Finster, Gerd van der Heuvel: Gottfried Wilhelm Leibniz. Monografie. Rowohlt.
  18. a b Über die Analysis des Unendlichen. Übersetzung: G. Kowalewski. Ostwalds Klassiker der exakten Naturwissenschaften, S. 7
  19. Detlef Spalt: Die Vernunft im Cauchy-Mythos. Verlag Harri Deutsch, ISBN 3-8171-1480-X (zu modernen Begriffsproblemen, und ob Cauchy es nun verstanden hat oder nicht, und einiges andere, unter anderem virtuelle Diskussionen mit verstorbenen Mathematikern Abel etc.)