Laurent-Reihe
Die Laurent-Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent-Reihe in mit Entwicklungspunkt diese Gestalt:
Dabei sind die und meist komplexe Zahlen, es gibt aber auch andere Möglichkeiten, die im Abschnitt Formale Laurent-Reihe weiter unten beschrieben sind. Für komplexe Laurent-Reihen benutzt man meist die Variable anstatt .
Summanden, deren Koeffizient ist, werden meist nicht mitgeschrieben, daher muss nicht jede Laurent-Reihe in beide Richtungen ins Unendliche reichen. Dies geschieht genauso, wie es bei Potenzreihen üblich ist, und ähnelt der Darstellung abbrechender Dezimalbrüche, bei denen formal unendlich viele Nullen hinter der letzten Ziffer stehen.
Die Reihe der Terme mit negativen Exponenten nennt man den Hauptteil der Laurent-Reihe, die Reihe der Terme mit nichtnegativen Exponenten nennt man den Nebenteil oder den regulären Teil.
Eine Laurent-Reihe mit verschwindendem Hauptteil ist eine Potenzreihe; hat sie außerdem nur endlich viele Terme, dann ist sie ein Polynom. Hat eine Laurent-Reihe insgesamt nur endlich viele Terme (mit negativem oder positivem Exponent), dann nennt man sie ein Laurent-Polynom.
Die Laurent-Reihe wurde 1843 von dem französischen Mathematiker Pierre Alphonse Laurent vorgestellt. Aufzeichnungen im Nachlass des deutschen Mathematikers Karl Weierstraß deuten jedoch darauf hin, dass dieser sie bereits 1841 entdeckt hatte.
Laurent-Zerlegung
BearbeitenDas Prinzip der Entwicklung einer holomorphen Funktion in eine Laurent-Reihe basiert auf der Laurent-Zerlegung. Dazu betrachte man ein Kreisringgebiet . Nun definiere man zwei holomorphe Funktionen und :
- .
Das heißt, die Funktionen und sind auf einer Kreisscheibe von Radius bzw. um den Mittelpunkt holomorph. Da das Argument der Funktion innerhalb des so definierten Kreisgebietes liegen muss, erkennt man schnell, dass die Funktion für Werte definiert ist. Damit ist auch die Summe der beiden Funktionen
auf dem Kreisring analytisch. Es lässt sich zeigen, dass sich jede auf einem Ringgebiet holomorphe Funktion auf diese Weise zerlegen lässt. Setzt man dazu noch voraus, so ist die Zerlegung eindeutig.
Entwickelt man diese Funktion nun in Form von Potenzreihen, so ergibt sich folgende Darstellung:
- .
Dabei wurde definiert. Außerdem folgt aus der Bedingung . Erweitert man diese Überlegungen nun auf die Entwicklung um einen Punkt , und nicht so wie eben um den Ursprung, so ergibt sich die eingangs angeführte Definition der Laurent-Reihe für eine holomorphe Funktion um den Entwicklungspunkt :
Beispiel
BearbeitenIm Folgenden bezeichnet wahlweise die reellen oder komplexen Zahlen.
- .
Die Funktion ist unendlich oft reell differenzierbar, sie ist jedoch an der Stelle nicht komplex differenzierbar und hat dort sogar eine wesentliche Singularität.
Indem man nun in die Potenzreihenentwicklung der Exponentialfunktion einsetzt, erhält man die Laurent-Reihe von mit Entwicklungspunkt :
Sie konvergiert für jede komplexe Zahl .
Das Bild rechts zeigt, wie sich die Partialsummenfolge
an die Funktion annähert.
Konvergenz von Laurent-Reihen
BearbeitenLaurent-Reihen sind wichtige Hilfsmittel der Funktionentheorie, vor allem zur Untersuchung von Funktionen mit isolierten Singularitäten.
Laurent-Reihen beschreiben komplexe Funktionen, die auf einem Kreisring holomorph sind, so wie Potenzreihen Funktionen beschreiben, die auf einer Kreisscheibe holomorph sind.
Sei
eine Laurent-Reihe in mit komplexen Koeffizienten und Entwicklungspunkt . Dann gibt es zwei eindeutig bestimmte Zahlen und , so dass Folgendes gilt:
- Die Laurent-Reihe konvergiert auf dem offenen Kreisring normal, also insbesondere absolut und lokal gleichmäßig. Damit meint man, dass Haupt- und Nebenteil normal konvergieren. Lokal gleichmäßige Konvergenz impliziert gleichmäßige Konvergenz auf jeder kompakten Teilmenge von , also insbesondere auf den Bildern von Kurven in . Die Laurent-Reihe definiert auf eine holomorphe Funktion .
- Außerhalb des Kreisrings divergiert die Laurent-Reihe. Das heißt, dass für jeden Punkt im Äußeren von , , die Reihe der Terme mit positiven oder die Terme mit negativen Exponenten divergiert.
- Auf dem Rand des Kreisrings kann man keine allgemeinen Aussagen machen, außer dass es mindestens einen Punkt auf der äußeren Begrenzung und mindestens einen Punkt auf der inneren Begrenzung gibt, in die nicht holomorph fortgesetzt werden kann.
Es ist möglich, dass und ist, es kann aber auch sein, dass ist. Die beiden Radien können wie folgt mit der Formel von Cauchy-Hadamard berechnet werden:
Man setzt und in der zweiten Formel.
Umgekehrt kann man mit einem Kreisring und einer auf holomorphen Funktion beginnen. Dann existiert immer eine eindeutig bestimmte Laurent-Reihe mit Entwicklungspunkt , die (mindestens) auf konvergiert und dort mit übereinstimmt. Für die Koeffizienten gilt
für alle und ein . Wegen des Integralsatzes von Cauchy kommt es auf die Auswahl von nicht an.
Der Fall , also der einer holomorphen Funktion auf einer gelochten Kreisscheibe um , ist besonders wichtig. Der Koeffizient der Laurentreihenentwicklung von heißt Residuum von in der isolierten Singularität , er spielt eine große Rolle im Residuensatz.
Formale Laurent-Reihe
BearbeitenFormale Laurent-Reihen sind Laurent-Reihen in einer Unbestimmten , für deren Konvergenzverhalten an einem Entwicklungspunkt (wie dem in der Einleitung) man sich (zumindest zunächst) nicht interessiert. Die Koeffizienten können dann aus einem beliebigen kommutativen Ring mit Einselement stammen. Üblicherweise werden formale Laurent-Reihen mit nur endlich vielen negativen Exponenten betrachtet, also mit einem so genannten endlichen Hauptteil.
Damit entsprechen die formalen Laurent-Reihen unendlichen Folgen aus , bei denen nur endlich viele Koeffizienten mit negativem Index von Null verschieden sind. Die Unbestimmte entspricht der Folge
- mit und für ,
also
Index 0 1
Zwei formale Laurent-Reihen sind per Definition genau dann gleich, wenn sie in allen Koeffizienten übereinstimmen. Zwei Laurent-Reihen werden addiert, indem die Koeffizienten mit gleichem Index (also komponentenweise) addiert werden, und, weil sie nur endlich viele Terme mit negativem Exponenten haben, können sie durch Faltung ihrer Koeffizientenfolgen multipliziert werden, so wie es mit Potenzreihen gemacht wird. Mit diesen Verknüpfungen wird die Menge aller Laurent-Reihen zu einem kommutativen Ring, der mit bezeichnet wird.
Ist ein Körper, dann bilden die formalen Potenzreihen in der Unbestimmten über einen Integritätsring, der mit bezeichnet wird. Sein Quotientenkörper ist isomorph zum Körper der Laurent-Reihen über .
Literatur
Bearbeiten- Eberhard Freitag & Rolf Busam: Funktionentheorie 1, Springer-Verlag, Berlin, ISBN 3-540-67641-4