Hauptmenü öffnen

Isolierte Singularitäten werden im mathematischen Teilgebiet der Funktionentheorie betrachtet. Isolierte Singularitäten sind besondere isolierte Punkte in der Quellmenge einer holomorphen Funktion. Man unterscheidet bei isolierten Singularitäten zwischen hebbaren Singularitäten, Polstellen und wesentlichen Singularitäten.

DefinitionBearbeiten

Es sei   eine offene Teilmenge,  . Ferner sei   eine holomorphe komplexwertige Funktion. Dann heißt   isolierte Singularität von  .

KlassifizierungBearbeiten

Jede isolierte Singularität gehört einer der folgenden drei Klassen an:

  • Der Punkt   heißt hebbare Singularität, wenn   auf   holomorph fortsetzbar ist. Nach dem riemannschen Hebbarkeitssatz ist dies z. B. dann der Fall, wenn   in einer Umgebung von   beschränkt ist.
  • Der Punkt   heißt Polstelle oder Pol, wenn   keine hebbare Singularität ist und es eine natürliche Zahl   gibt, sodass   eine hebbare Singularität bei   hat. Ist das   minimal gewählt, dann sagt man,   habe in   einen Pol  -ter Ordnung.
  • Andernfalls heißt   eine wesentliche Singularität von  .

Hebbare Singularitäten und Polstellen werden auch unter dem Begriff außerwesentliche Singularität zusammengefasst.

Isolierte Singularitäten und die LaurentreiheBearbeiten

Der Typ der Singularität lässt sich auch an der Laurentreihe

 

von   in   ablesen:

  • Eine hebbare Singularität liegt genau dann vor, wenn der Hauptteil verschwindet, d. h.   für alle negativen ganzen Zahlen  .
  • Ein Pol  -ter Ordnung liegt genau dann vor, wenn der Hauptteil nach   Gliedern abbricht, d. h.   und   für alle  .
  • Eine wesentliche Singularität liegt genau dann vor, wenn unendlich viele Glieder mit negativem Exponenten nicht verschwinden.

Aussagen über die Eigenschaften holomorpher Funktionen an wesentlichen Singularitäten machen der Große Satz von Picard und als einfacherer Spezialfall davon der Satz von Casorati-Weierstraß.

BeispieleBearbeiten

 
Plot der Funktion  . Sie hat im Nullpunkt eine wesentliche Singularität (Bildmitte). Der Farbton entspricht dem komplexen Argument des Funktionswertes, während die Helligkeit seinen Betrag darstellt. Hier sieht man, dass sich die wesentliche Singularität unterschiedlich verhält, je nachdem, wie man sich ihr nähert (im Gegensatz dazu wäre ein Pol gleichmäßig weiß).

Es sei   und  

  •   kann durch   stetig auf   fortgesetzt werden, also hat   bei   eine hebbare Singularität.
  •   hat bei   einen Pol erster Ordnung, weil   durch   stetig auf   fortgesetzt werden kann.
  •   hat bei   eine wesentliche Singularität, weil   für   für festes   stets unbeschränkt ist, beziehungsweise weil in der Laurentreihe um   unendlich viele Glieder des Hauptteils nicht verschwinden, denn es gilt
 .

QuellenBearbeiten