Stochastische Integration

Die Theorie der stochastischen Integration befasst sich mit Integralen und Differentialgleichungen in der Stochastik. Sie verallgemeinert die Integralbegriffe von Henri Léon Lebesgue und Thomas Jean Stieltjes auf eine breitere Menge von Integratoren. Es sind stochastische Prozesse mit unendlicher Variation, insbesondere der Wiener-Prozess, als Integratoren zugelassen. Die Theorie der stochastischen Integration stellt dabei die Grundlage der stochastischen Analysis dar, deren Anwendungen sich zumeist mit der Untersuchung stochastischer Differentialgleichungen beschäftigen.

Integralbegriffe nach Itō und StratonowitschBearbeiten

Seien   zwei (nicht notwendigerweise unabhängige) reellwertige stochastische Prozesse auf einem gemeinsamen Wahrscheinlichkeitsraum  . Als Itō-Integral (nach Itō Kiyoshi) von   nach   über dem Intervall   bezeichnet man die Zufallsvariable

 

Das zugehörige Stratonowitsch-Integral (nach Ruslan Leontjewitsch Stratonowitsch) berechnet sich für dieselbe Wahl von   als

 

Beim Itō-Integral wird der Integrand   also stets am Anfang des  -Intervalls ausgewertet, bei Stratonowitsch werden der Anfangs- und Endwert gemittelt. Bei gewöhnlichen (Riemann- oder Lebesgue-) Integralen von deterministischen (nicht zufälligen) und hinreichend glatten (beispielsweise stetigen) Funktionen hat dies keinen Einfluss auf das Ergebnis, doch im stochastischen Fall gilt: Sind   und   nicht unabhängig, so kann das tatsächlich zu verschiedenen Werten führen (siehe Beispiel unten).

Als Klasse der möglichen Integratoren   werden in der allgemeinsten Formulierung Semimartingale zugelassen, die Integranden   sind vorhersagbare Prozesse.

 
Eine Brownsche Bewegung   und das Integral von  

BeispielBearbeiten

Sei   ein (Standard-)Wiener-Prozess. Zu berechnen ist das Itō-Integral  . Schreibt man der Kürze halber   und benutzt man die Identität

 

so erhält man aus obiger Integrationsvorschrift

 

Benutzt man nun einerseits, dass   gilt, sowie andererseits die Eigenschaft, dass   i.i.d.  -verteilt ist (wegen der unabhängigen, normalverteilten Zuwächse der Brownschen Bewegung), so folgt mit dem Gesetz der großen Zahlen für den hinteren Grenzwert

 

Um das entsprechende Stratonowitsch-Integral zu berechnen, nutzt man die Stetigkeit der Brownschen Bewegung aus:

 

Itō- und Stratonowitsch-Integral über demselben Prozess führen also zu verschiedenen Ergebnissen, wobei das Stratonowitsch-Integral eher der intuitiven Ahnung aus der gewöhnlichen (deterministischen) Integralrechnung entspricht.

MartingaleigenschaftBearbeiten

Der bei weitem am häufigsten verwendete Integrator   ist eine Brownsche Bewegung. Der entscheidende Vorteil, den das Stratonowitsch-Integral nicht hat und der letztendlich dazu führte, dass sich das Itō-Integral weitgehend als Standard durchgesetzt hat, ist die folgende Eigenschaft:

Sei   ein Lévy-Prozess mit konstantem Erwartungswert,   eine nicht vorgreifende beschränkte Funktion von   und   (d. h., für jedes   ist   messbar bezüglich der σ-Algebra  , die von den Zufallsvariablen   erzeugt wird), so ist der Prozess
 
ein lokales Martingal bezüglich der natürlichen Filtrierung von  . Unter zusätzlichen Beschränktheitsbedingungen ist der Integralprozess sogar ein Martingal.

Anwendung: Itō-ProzessBearbeiten

Ausgehend vom Itōschen Integralbegriff ist es nun möglich, eine breite Klasse von stochastischen Prozessen zu definieren: Demnach wird ein stochastischer Prozess   mit   Itō-Prozess genannt, wenn es eine Brownsche Bewegung   mit   und stochastische Prozesse  ,   gibt mit

 

wobei angenommen wird, dass die beiden Integrale existieren.[1] In Differentialschreibweise wird diese Gleichung als

 

notiert. Ein Itō-Prozess kann also als verallgemeinerter Wiener-Prozess mit zufälliger Drift und Volatilität angesehen werden.

Das Prädikat „  ist ein Itō-Prozess“ wird somit zu einem stochastischen Pendant zum Begriff der Differenzierbarkeit. Ausgehend hiervon wurden dann von Itō selbst die ersten stochastischen Differentialgleichungen definiert.

Hängen der Driftkoeffizient   und der Diffusionskoeffizient   nicht von der Zeit ab, so spricht man von Itō-Diffusion – hängen sie zusätzlich von der Zeit ab, so liegt dagegen ein allgemeinerer Itō-Prozess vor.

Durch zahlreiche Anwendungen in der mathematischen Modellierung, insbesondere in der statistischen Physik und der Finanzmathematik, hat sich der Itō-Kalkül inzwischen zu einem unverzichtbaren mathematischen Werkzeug entwickelt.

Siehe auchBearbeiten

LiteraturBearbeiten

  • J. Jacod, A. Shiryaev: Limit theorems for stochastic processes. Springer, Berlin.
  • P. Protter: Stochastic integrals and differential equations. Springer, Berlin.

EinzelnachweiseBearbeiten

  1. Hui-Hsiung Kuo: Introduction to Stochastic Integration. Springer, 2006, ISBN 978-0387-28720-1, S. 102 (eingeschränkte Vorschau in der Google-Buchsuche).