Schrödingergleichung

partielle Differentialgleichung zur Beschreibung der ungestörten zeitlichen Entwicklung von nicht-relativistischen Quantensystemen

Die Schrödingergleichung ist eine grundlegende Gleichung der Quantenmechanik. Sie ist eine partielle Differentialgleichung, die in nichtrelativistischer Näherung die zeitliche Veränderung des quantenmechanischen Zustands eines physikalischen Systems beschreibt. Die Gleichung wurde 1926 von Erwin Schrödinger zuerst als Wellengleichung aufgestellt[1] und bei ihrer ersten Anwendung erfolgreich zur Erklärung des Spektrums des Wasserstoffatoms genutzt.

Erwin Schrödinger, ca. 1914
Schrödinger-Gleichung vor der Warschauer Universität für neue Technologien (Ochota-Campus) (oben rechts)

In der Schrödingergleichung ist der Zustand des Systems durch eine Wellenfunktion repräsentiert. Die Gleichung beschreibt deren zeitliche Veränderung dadurch, dass ein Hamiltonoperator auf die Wellenfunktion wirkt. Wenn das Quantensystem ein klassisches Analogon hat (z. B. Teilchen im dreidimensionalen Raum), lässt sich der Hamiltonoperator schematisch aus der klassischen Hamiltonfunktion erhalten. Für manche Systeme werden Hamiltonoperatoren auch direkt nach quantenmechanischen Gesichtspunkten konstruiert (Beispiel: Hubbard-Modell).

Im Allgemeinen verändert die Wellenfunktion im Laufe der Zeit ihre Form. Damit können physikalische Prozesse beschrieben werden wie z. B. die Ausbreitung, Streuung und Interferenz eines Teilchens. Bei manchen Wellenfunktionen bewirkt der Hamiltonoperator aber keine Änderung der Form, sondern nur eines komplexen globalen Phasenfaktors, so dass sich das Betragsquadrat solcher Wellenfunktionen mit der Zeit nicht ändert. Die entsprechenden Zustände sind stationäre Zustände, auch als Eigenzustände des Hamiltonoperators bezeichnet. Die Schrödingergleichung ermöglicht die Berechnung der durch solche Zustände definierten Energieniveaus.

Die Schrödingergleichung bildet das Fundament für fast alle praktischen Anwendungen der Quantenmechanik. Seit 1926 gelang mit ihr die Erklärung vieler Eigenschaften von Atomen und Molekülen (bei denen die Elektronenwellenfunktionen als Orbitale bezeichnet werden) sowie von Festkörpern (Bändermodell).

Geschichte der SchrödingergleichungBearbeiten

Die nach ihm benannte Gleichung wurde von Schrödinger 1926 postuliert. Ausgangspunkt dabei waren die auf Louis de Broglie zurückgehende Vorstellung von Materiewellen und die Hamilton-Jacobi-Theorie der klassischen Mechanik. Die Wirkung   der klassischen Mechanik wird dabei mit der Phase einer Materiewelle identifiziert (siehe WKB-Näherung). Sobald typische Abstände kleiner als die Wellenlänge sind, spielen Beugungsphänomene eine Rolle, und die klassische Mechanik muss durch eine Wellenmechanik ersetzt werden.

Die Schrödingergleichung kann nicht aus der klassischen Physik hergeleitet werden, sondern ist ein Postulat. Formal kann die Schrödingergleichung jedoch aus der Hamiltonfunktion (Ausdruck für die Energie) des betrachteten Problems

 

abgeleitet werden, indem man die klassischen Größen Energie, Impuls und Ort gemäß dem Korrespondenzprinzip durch die entsprechenden quantenmechanischen Operatoren ersetzt:

 

Anschließendes Anwenden auf die unbekannte Wellenfunktion   ergibt die Schrödingergleichung

 .

Auf die gleiche Weise kann die Hamilton-Funktion in einen Hamilton-Operator umgewandelt werden.

Historisch gesehen ging Schrödinger von Louis de Broglies Beschreibung freier Teilchen aus und führte in seiner Arbeit Analogien zwischen Atomphysik und elektromagnetischen Wellen, in Form von De-Broglie-Wellen (Materiewellen), ein:

 ,

wobei   eine Konstante ist. Diese Wellenfunktion ist eine Lösung der eben genannten Schrödingergleichung mit  . In der statistischen Interpretation der Quantenmechanik (begründet von Max Born) gibt das Betragsquadrat   der Wellenfunktion die Aufenthaltswahrscheinlichkeitsdichte des Teilchens an.

Eine andere Möglichkeit, die Schrödingergleichung aufzustellen, benutzt den von Richard Feynman eingeführten Begriff des Pfadintegrals. Diese alternative Herleitung betrachtet die Wahrscheinlichkeiten für die verschiedenen Bewegungen (Pfade) des zu untersuchenden Teilchens von einem Ort   nach   und führt damit wieder zu derselben Schrödingergleichung. Auch hierbei spielt die klassische Wirkung   eine zentrale Rolle.

Schrödingergleichung in generischer FormBearbeiten

 
Büste Schrödingers in Wien mit seiner Schrödingergleichung

Die Schrödingergleichung in ihrer allgemeinsten Form lautet

 

Dabei bezeichnet   die imaginäre Einheit,   die reduzierte Plancksche Konstante,   die partielle Ableitung nach der Zeit und   den Hamiltonoperator (Energieoperator) des Systems. Der Hamiltonoperator wirkt in einem komplexen Hilbertraum  , die zu bestimmende Größe   ist ein Zustandsvektor in diesem Raum. Diese generische Form der Schrödingergleichung gilt auch in der relativistischen Quantenmechanik und in der Quantenfeldtheorie. In letzterem Fall ist der Hilbertraum ein Fockraum.

Ein quantenmechanischer Zustand wird durch einen Vektor im Hilbertraum   beschrieben. Meist wird die Dirac-Notation mit Bra und Ket verwendet. Die Struktur des Hilbertraums wird durch das betrachtete System bestimmt. Für die Beschreibung des Spins eines Teilchens mit Spin 1/2 ist der Hilbertraum beispielsweise zweidimensional  , für einen harmonischen Oszillator ist seine Dimension abzählbar unendlich  . Ein freies Teilchen wird in einem (uneigentlichen) Hilbertraum mit überabzählbar unendlicher Dimension beschrieben.

Die durch die Schrödingergleichung beschriebene Zeitentwicklung ist eine unitäre Transformation des Zustandsvektors im Hilbertraum. Da es sich dabei um eine lineare Transformation handelt, gilt das Superpositionsprinzip. Eine weitere Konsequenz ist die Möglichkeit der quantenmechanischen Verschränkung nicht wechselwirkender Teilsysteme.

ZeitentwicklungsoperatorBearbeiten

Die Zeitentwicklung der Zustände wird durch die Anwendung eines Hamiltonoperators   auf die Zustände beschrieben. „Ausintegriert“ erhält man den Zeitentwicklungsoperator:

 

Der Zeitentwicklungsoperator hat für zeitunabhängige Hamiltonoperatoren   die Form:

 

Die Norm eines Zustands ist gleich der L2-Norm, die durch das Skalarprodukt induziert wird:

 

Die Wahrscheinlichkeitserhaltung (Erhaltung der Norm des Zustands) drückt sich durch die Unitarität des Zeitentwicklungsoperators   aus, was wiederum darauf beruht, dass   selbstadjungiert ist. Mit   und   folgt:

 

Setzt man die Erhaltung der Wahrscheinlichkeitsdichte in der Theorie voraus, so muss der Zeitentwicklungsoperator unitär sein. Die Änderung eines zeitabhängigen Zustandes   wird daher durch einen anti-hermiteschen Operator bestimmt, wodurch man bereits vor Kenntnis der Schrödingergleichung ohne Beschränkung der Allgemeinheit

 

ansetzen kann. Damit reduziert sich das Postulieren der Schrödingergleichung auf die Bestimmung der Gestalt des hermiteschen Operators  .

Die Hermitezität ist eine Forderung, die an alle Operatoren der Quantenmechanik gestellt wird, die nach dem Korrespondenzprinzip Messergebnisse repräsentieren. Da Messergebnisse stets reell sein müssen, kommen als zugeordnete Operatoren nur hermitesche Operatoren in Frage. Solche Operatoren werden auch Observablen genannt.

Nichtrelativistische Quantenmechanik von PunktteilchenBearbeiten

Die von Schrödinger aufgestellte Gleichung ist Prototyp und Spezialfall des allgemeinen Schemas. Sie beschreibt die Quantenmechanik von nichtrelativistischen Punktteilchen, der Hilbertraum ist der Raum komplexwertiger Funktionen im Konfigurationsraum.

Ein einzelnes Teilchen mit skalarem PotentialBearbeiten

Die komplexwertige Wellenfunktion   eines Punktteilchens in einem Potential   ist eine Lösung der Schrödingergleichung

 ,

wobei   die Masse des Teilchens,   sein Ort,   der Laplace-Operator und   die Zeit sind.

Die Schrödingergleichung ist eine lineare partielle Differentialgleichung zweiter Ordnung. Aufgrund der Linearität gilt das Superpositionsprinzip: Wenn   und   Lösungen sind, so ist auch   eine Lösung, wobei   und   beliebige komplexe Konstanten sind.

Mit dem Hamiltonoperator

 

lässt sich die Schrödingergleichung in ihrer allgemeinen Form

 

schreiben.

Ein geladenes Teilchen im elektromagnetischen FeldBearbeiten

Hinweis: Elektrodynamische Größen sind hier im CGS-Einheitensystem angegeben

Falls das Teilchen, wie im Falle eines Elektrons oder Protons, eine elektrische Ladung besitzt, so verallgemeinert sich bei Anwesenheit eines äußeren elektromagnetischen Feldes der Ein-Teilchen-Hamiltonoperator in der Orts-Darstellung zu

 ,

wobei hier   die elektrische Ladung des Teilchens (  bei Elektronen),   die Lichtgeschwindigkeit im Vakuum,   das Vektorpotential und   das skalare Potential bezeichnen. Die sich so ergebende Schrödingergleichung tritt dabei an die Stelle der klassischen Gleichung mit Lorentzkraft. Die Potentiale sind durch folgende Beziehungen mit dem elektrischen Feld   bzw. dem magnetischen Feld   verknüpft:

 

Der Hamiltonoperator eines Vielteilchensystems ist die Summe der Ein-Teilchen-Hamiltonoperatoren und der Wechselwirkungsenergien (zum Beispiel der Coulomb-Wechselwirkungen zwischen den Teilchen).

Mehrere TeilchenBearbeiten

Mehrere Teilchen werden durch eine einzelne Wellenfunktion   dargestellt. Diese Wellenfunktion hat als Parameter die Positionen aller Teilchen sowie die Zeit.

 

Bedeutung der Schrödingergleichung und ErläuterungenBearbeiten

Allgemeine ErläuterungenBearbeiten

Mit der Schrödingergleichung wurde die Ad-hoc-Konstruktion des bohrschen Atommodells überwunden (wie zuvor schon mit der umständlicheren Heisenberg'schen Matrizenmechanik). Die diskreten Energieniveaus des Wasserstoffatoms, die im Bohrschen Modell stationären klassischen Bahnen eines Elektrons im Coulombpotential des Atomkerns zugeordnet sind, ergeben sich im Rahmen der Schrödingergleichung als Eigenwerte der Schrödingergleichung für ein Elektron im Potential des Atomkerns.

Während die Bahn   eines Teilchens in der klassischen Mechanik durch die Newtonsche Bewegungsgleichung bestimmt ist, liefert in der Quantenmechanik die Schrödingergleichung stattdessen eine Wahrscheinlichkeitsverteilung   für den Aufenthaltsort des Teilchens. Man spricht auch veranschaulichend davon, dass das Teilchen über den Raum delokalisiert sei. Als umfassendere Theorie muss die Quantenmechanik allerdings die klassische Mechanik enthalten. Eine Form dieser Korrespondenz wird durch das Ehrenfest-Theorem hergestellt. Das Theorem besagt u. a., dass der Mittelwert der Teilchenkoordinate die klassische Bewegungsgleichung erfüllt. Relevant und evident wird die Korrespondenz bei lokalisierten kohärenten Wellenpaketen. Solche Wellenpakete lassen sich bei höheren Quantenzahlen, also z. B. bei höheren Anregungszuständen des Wasserstoffatoms konstruieren.

In der Schrödingergleichung kommen die Wellenfunktion und die Operatoren im sogenannten Schrödinger-Bild vor, in dem eine Bewegungsgleichung für die Zustände betrachtet wird. Im Heisenberg-Bild werden stattdessen Bewegungsgleichungen für die Operatoren selbst betrachtet. Diese Bewegungsgleichungen werden als Heisenbergsche Bewegungsgleichung bezeichnet. Die beiden Formulierungen sind mathematisch äquivalent.

Die Schrödingergleichung ist deterministisch, das heißt, dass ihre Lösungen bei Vorgabe von Anfangsbedingungen eindeutig sind. Andererseits sind die Lösungen der Schrödingergleichung nach der Kopenhagener Deutung statistische Größen, aus denen nur Aussagen über die Mittelwerte von Messergebnissen in gleichartigen Versuchsanordnungen folgen. Nach der Kopenhagener Deutung der Quantenmechanik liegt dies nicht an einem Mangel der Messanordnung, vielmehr ist dies durch die Natur selbst bedingt.

Normierung der WellenfunktionBearbeiten

Für die statistische Interpretation der Quantenmechanik ist es notwendig, die Lösungen der Schrödingergleichung so zu normieren, dass

 

ist. Diese sogenannte Normierungsbedingung sagt aus, dass die Wahrscheinlichkeit, dass das Teilchen irgendwo im gesamten Raum zu finden ist, bei 1 liegt. Für die so erhaltenen normierten Lösungen entspricht dann   der Aufenthaltswahrscheinlichkeitsdichte des Teilchens am Ort   zum Zeitpunkt  . Allerdings ist nicht jede Lösung einer Schrödingergleichung normierbar. Sofern existent, ist diese normierte Lösung bis auf einen Phasenfaktor der Form   für ein reelles  , das aber physikalisch bedeutungslos ist, eindeutig bestimmt.

Da die Schrödinger-Gleichung invariant ist unter der Phasentransformation   (U(1)-Symmetrie), folgt aus dem Noether-Theorem die Erhaltung der Normierung; die Wahrscheinlichkeit ist also eine Erhaltungsgröße.

Erwartungswerte von MessgrößenBearbeiten

Aus der Wellenfunktion ergeben sich die physikalischen Eigenschaften des Teilchens. Beispielsweise wird der klassische Wert für den Ort des Teilchens   durch den mittleren Ort des Teilchens zur Zeit  , also

 

ersetzt, während der klassische Wert für den Impuls des Teilchens durch folgenden Mittelwert ersetzt wird:

  .

Jede klassische Messgröße   wird so durch eine Mittelung des zugehörigen Operators über den Raum, in dem sich das Teilchen befindet, ersetzt:

 .

Der Ausdruck   wird als Erwartungswert von   bezeichnet. Der Erwartungswert der Energie ist gleich  .

Lösungsverfahren der SchrödingergleichungBearbeiten

Stationäre LösungenBearbeiten

Für ein System mit Hamiltonoperator   ohne explizite Zeitabhängigkeit ist der Ansatz

 

naheliegend. Hierbei ist die Zeitabhängigkeit des Zustandsvektors durch einen Faktor   mit konstanter Frequenz   ausgedrückt. Für den zeitunabhängigen Faktor des Zustandsvektors wird die Schrödingergleichung zur Eigenwertgleichung

 .

Entsprechend der Planckschen Formel hat ein solches System die Energie

 .

Diskrete Eigenwerte entsprechen diskreten Energieniveaus des Systems („Quantisierung als Eigenwertproblem“).

Anmerkung: Eine gebräuchliche Ortsraumdarstellung der „zeitfreien“ (stationären) Schrödingergleichung lautet:

 

Lösungsverfahren allgemeinBearbeiten

Die Lösungen der Schrödingergleichung (bzw. Pauligleichung) beinhalten im Prinzip die ganze Festkörperphysik und Chemie (eine Einschränkung: für innere Elektronen schwerer Atome sind relativistische Korrekturen nicht mehr klein). Lösungen in geschlossener Form gibt es nur für einige Ein-Elektron-Systeme (Wasserstoffatom, Potentialbarriere, harmonischer Oszillator, Morse-Potential, …). Ab Heliumatom oder Wasserstoffmolekül ist man auf numerische Techniken angewiesen.

Mit Computerunterstützung und geeigneten Methoden (Störungsrechnung, Variationsansätze, …) lassen sich Systeme mit bis zu etwa 10 Elektronen numerisch ohne Näherung behandeln, d. h. die Verfahren konvergieren mit steigendem Rechenaufwand gegen die exakte Lösung. Ein Beispiel solcher Verfahren ist Configuration Interaction.

Bei diesen prinzipiell exakten Verfahren ist im  -Teilchen-Fall eine Wellenfunktion im  -dimensionalen Konfigurationsraum zu bestimmen. Verwendet man   (Stützpunkt- oder Variations-) Werte je Dimension, dann sind   Werte zu berechnen. Im Ergebnis macht diese exponentiell wachsende Anforderung an Speicher und Rechenleistung exakte Rechnungen für die meisten Systeme unmöglich (ein Ethan-Molekül z. B. enthält zwei Kohlenstoffatome und 18 Elektronen). Walter Kohn hat dieses exponentielle Ressourcenwachstum als „Exponentialbarriere“ bezeichnet.[2]

Größere Systeme werden daher mit Näherungsverfahren untersucht. Bekannte Verfahren sind die Hartree-Fock-Näherung, Erweiterungen und die Split-Operator-Methode in der Theoretischen Chemie.

Eine Sonderrolle spielt die auf Walter Kohn zurückgehende Dichtefunktionaltheorie, da diese gezielt die Exponentialbarriere umgeht. Damit lassen sich mit ab initio-Rechnungen Gitterkonstanten und Bindungsenergien auch komplizierter Atome und Verbindungen mit Fehlern im Prozentbereich berechnen.

LösungsbeispieleBearbeiten

Eindimensionales freies TeilchenBearbeiten

Im eindimensionalen Fall eines freien Teilchens reduziert sich der Laplace-Operator zu einer doppelten Ableitung und das Potential   verschwindet.

 

Im Fall einer gaussförmigen Amplitudenverteilung ist eine Lösung der eindimensionalen Schrödingergleichung mit verschwindendem Potential:

 

Hier ist   die halbe Breite des Wellenpakets und   die Wellenlänge zum Zeitpunkt  . Die folgenden Bilder zeigen den räumlichen und zeitlichen Verlauf der Wellenfunktion   für verschiedene Anfangsbedingungen. Im Fall einer reinen Gaussverteilung verbreitert sich die Wellenfunktion zu beiden Seiten. Wird die anfängliche Gaussverteilung mit der komplexen Schwingung   multipliziert, ergibt sich ein bewegtes Teilchen mit Dispersion.

 
Eindimensionale Wellenfunktion eines Elektrons über x-Koordinate. Zu Anfang Gaussverteilung mit 1 nm Breite und überlagerter komplexer Schwingung. Mitlaufendes Koordinatensystem.
 
Eindimensionale Wellenfunktion eines Elektrons über x-Koordinate. Zu Anfang Gaussverteilung mit 1 nm Breite und überlagerter komplexer Schwingung.
 
Eindimensionale Wellenfunktion eines Elektrons über x-Koordinate. Zu Anfang reine Gaussverteilung mit 1 nm Breite.

Ein einfaches Modell für die chemische BindungBearbeiten

Dieses Beispiel beschreibt ein einfaches Modell für chemische Bindung (siehe Feynman Lectures[3]). Ein Elektron ist an einen Atomkern 1 gebunden und befindet sich im Zustand  , oder aber an einen Atomkern 2 und befindet sich im Zustand  . Wenn keine Übergänge möglich sind, gilt jeweils die stationäre Schrödingergleichung. Wenn Übergänge von   nach   möglich sind, muss der Hamiltonoperator bei Anwendung auf Zustand   eine Beimischung von Zustand   erzeugen, und analog für Übergänge von   nach  . Ein Parameter   bestimmt die Übergangsrate. Das System wird dann wie folgt modelliert:

 

Durch Addition und Subtraktion dieser Gleichungen sieht man, dass es neue stationäre Zustände in Form von Superpositionen aus   und   gibt:

 

denn für diese findet man mit elementarer Algebra

 

Die Vorfaktoren der stationären Zustände werden wieder als messbare Energien interpretiert. Eine der beiden Energien (je nach Vorzeichen von  ) ist kleiner als das ursprüngliche  . Der entsprechende Superpositionszustand ist der Bindungszustand des Moleküls.

Schrödingergleichung in der MathematikBearbeiten

Für die Schrödingergleichung in einem Hilbertraum lässt sich mathematisch zeigen, dass der Hamiltonoperator   selbstadjungiert ist. Dann folgt aus dem Satz von Stone die Existenz einer unitären Gruppe und damit die eindeutige Lösbarkeit des Anfangswertproblems. Dabei ist es aus mathematischer Sicht wichtig, Selbstadjungiertheit   von der schwächeren Eigenschaft der Symmetrie   zu unterscheiden. Letztere lässt sich in der Regel durch eine partielle Integration zeigen, für die Selbstadjungiertheit ist eine detaillierte Untersuchung des Definitionsbereichs des adjungierten Operators notwendig. Für beschränkte Operatoren fallen beide Begriffe zusammen, aber Schrödingeroperatoren sind in der Regel unbeschränkt und können nach dem Satz von Hellinger-Toeplitz nicht auf dem ganzen Hilbertraum definiert werden. Danach gilt es, das Spektrum von   zu untersuchen, um die Dynamik zu verstehen.

Analytische Verfahren und Untersuchung der LösungseigenschaftenBearbeiten

Schrödingergleichung ohne PotentialBearbeiten

Die Schrödingergleichung ohne Potential (freie Schrödingergleichung)

 

kann mittels Fourier-Transformation behandelt werden und der freie Schrödingeroperator ist auf dem Sobolev-Raum   selbstadjungiert. Das Spektrum ist gleich  .

Erhaltung der Hs-NormenBearbeiten

Die Normerhaltung

 

lässt sich durch Fourier-Transformation zeigen. Sie drückt im Fall   die Erhaltung der Wahrscheinlichkeiten aus.

DispersionBearbeiten

Es gilt

 .

Diese Eigenschaft drückt das Zerfließen der Wellenpakete aus.

Schrödingergleichung mit PotentialBearbeiten

Die Schrödingergleichung mit einem Potential

 

kann mit Methoden der Störungstheorie behandelt werden. Zum Beispiel folgt aus dem Satz von Kato-Rellich: Gilt in drei (oder weniger) Dimensionen  , wobei   beschränkt ist und im Unendlichen verschwindet und   quadratintegrierbar ist, dann ist   auf   selbstadjungiert und das wesentliche Spektrum ist  . Unter dem wesentlichen Spektrum kann es maximal abzählbar viele Eigenwerte geben die sich nur bei Null häufen können. Diese Voraussetzungen decken insbesondere das Coulomb-Potential und damit das Wasserstoffatom ab,

 ,

das durch Separation in Kugelkoordinaten explizit lösbar ist. Betrachtet man Atome mit mehr als einem Elektron oder Moleküle, so wurde die Selbstadjungiertheit erst später von Tosio Kato bewiesen. Die Struktur des essentiellen Spektrums wird in diesem Fall durch das HVZ-Theorem (nach W. Hunziker, C. van Winter und GM Zhislin) beschrieben. Solche Modelle können in der Regel nur numerisch gelöst werden.

Die eindimensionale Schrödingergleichung ist ein Spezialfall einer Sturm-Liouville-Gleichung.

ErweiterungenBearbeiten

Pauli- und Dirac-GleichungBearbeiten

Die Wechselwirkung des Spins oder Eigendrehimpulses des Teilchens mit einem äußeren Magnetfeld wird in obiger Form der Schrödingergleichung nicht berücksichtigt. Wenn diese Wechselwirkung nicht vernachlässigt werden soll, ist für ein Elektron bei Anwesenheit eines äußeren Magnetfeldes die Pauli-Gleichung zu benutzen.

Die Pauli-Gleichung ist jedoch nicht lorentzinvariant, sondern „nur“ Galilei-invariant (nicht relativistisch). Die korrekte relativistische Verallgemeinerung der Schrödinger- und auch der allgemeineren Pauli-Gleichung stellt für Fermionen die lorentzinvariante Diracgleichung dar, die im Gegensatz zur Schrödingergleichung eine partielle Differentialgleichung 1. Ordnung ist.

Nichtlineare Erweiterungen der SchrödingergleichungBearbeiten

Eine Reihe von Problemen in der Physik führt auf eine Verallgemeinerung, die nichtlineare Schrödingergleichung

 ,

mit einem nichtlinearen Selbstwechselwirkungsterm  . Dabei wurde die explizite Abhängigkeit der Lösungsfunktion   von Zeit und Ort weggelassen. Speziell im Fall der kubischen, nichtlinearen Schrödingergleichung  ,   und einer Dimension   handelt es sich um eine integrable Wellengleichung mit Solitonenlösungen. Sie taucht zum Beispiel bei der Beschreibung von Lichtwellen in Glasfasern und Wasserwellen auf. In Dimension   hat man im kubischen Fall die Gross-Pitaevskii-Gleichung, die das Bose-Einstein-Kondensat beschreibt.

Nimmt man eine gravitative Selbstwechselwirkung der Teilchen an, enthält man die nichtlineare Schrödinger-Newton-Gleichung.

LiteraturBearbeiten

Schrödingers Originalarbeiten

  • Erwin Schrödinger: Quantisierung als Eigenwertproblem. In: Annalen der Physik. Bd. 79, 1926, S. 361, 489; Bd. 80, 1926, S. 437; und Bd. 81, 1926, S. 109. (Originalarbeiten)
  • Erwin Schrödinger: Die Wellenmechanik. Battenberg, Stuttgart 1963, DNB 454485557. (Dokumente der Naturwissenschaft. Abteilung Physik; Bd. 3) (Schrödingers Arbeiten zur Wellenmechanik) – Die Arbeiten zur Wellenmechanik sind auch nachgedruckt in Günther Ludwig (Hrsg.): Wellenmechanik. Akademie-Verlag, Berlin 1970, DNB 458581941.
  • Erwin Schrödinger: Der Grundgedanke der Wellenmechanik. In: Was ist ein Naturgesetz? Beiträge zum naturwissenschaftlichen Weltbild. 5. Auflage. Oldenbourg Wissenschaftsverlag, München 1997, ISBN 3-486-56293-2, S. 86–101 (eingeschränkte Vorschau in der Google-Buchsuche).

Lehrbücher der QuantenmechanikBearbeiten

Die Schrödingergleichung wird in allen üblichen Lehrbüchern der Quantenmechanik behandelt, zum Beispiel:

Mathematik:

  • Michael Reed, Barry Simon: Methods of Modern Mathematical Physics. 4 Bände, Academic Press 1978, 1980
  • Hans Cycon, Richard G. Froese, Werner Kirsch, Barry Simon: Schrödinger Operators. Springer 1987
  • Volker Bach: Schrödinger Operators. In: J.-P. Francoise, Gregory L. Naber, S. T. Tsou (Hrsg.): Encyclopedia of Mathematical Physics. Bd. 4, Academic Press, 2006, ISBN 0-12-512660-3.
  • Gerald Teschl: Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators. American Mathematical Society, 2009. (Freie Online-Version)

AnmerkungenBearbeiten

  1. In seinem Nobel-Vortrag (1933) beschreibt Schrödinger auf anschauliche Weise (ohne Mathematik) die Wirkungsweise des Hamiltonschen Prinzips in der klassischen Mechanik und der Quanten- bzw. Wellenmechanik.
  2. Walter Kohn: Nobelpreis-Vortrag (1998)
  3. R. P. Feynman, R. B. Leighton, M. L. Sands: Vorlesungen über Physik. Bd. 3: Quantenmechanik. Oldenbourg-Verlag, München.

WeblinksBearbeiten