Zustand (Quantenmechanik)

mathematisches Objekt der Quantenmechanik
(Weitergeleitet von Zustandsvektor)

Ein quantenmechanischer Zustand ist die Beschreibung des Zustands eines physikalischen Systems nach den Regeln der Quantenmechanik. Diese unterscheidet sich grundlegend von der Beschreibung des Zustands nach den Regeln der klassischen Physik, damit die an quantenphysikalischen Systemen gemachten Beobachtungen erfasst werden können. Zu den verschiedenen Interpretationen der Quantenmechanik gehören unterschiedliche Zustandsbegriffe. Dieser Artikel behandelt den Zustandsbegriff der weit verbreiteten Kopenhagener Interpretation.

Überblick Bearbeiten

Physikalischer Gehalt Bearbeiten

Im Gegensatz zum klassischen Begriff legt der Zustand in der Kopenhagener Interpretation der Quantenmechanik nicht für jede am System durchführbare Messung einen mit Sicherheit zu erwartenden Messwert fest, sondern nur für jeden möglichen Messwert die Wahrscheinlichkeit  , dass gerade dieser Wert eintritt. Den Grenzfall   für einen Messwert (und damit   für alle anderen), was die sichere Voraussage dieses einen Messwerts bedeutet, gibt es nur bei denjenigen Zuständen, die Eigenzustände zu der betreffenden Messgröße sind. Für zwei verschiedene Messgrößen existieren in vielen Fällen überhaupt keine gemeinsamen Eigenzustände, so z. B. für den Ort und die Geschwindigkeit. Solche Messgrößen heißen zueinander inkommensurabel. Im Gegensatz zum klassischen Zustand steht auch, dass die Zeitentwicklung des quantenmechanischen Zustands nicht durchgehend deterministisch festgelegt ist. Stattdessen wird im Allgemeinen durch eine Messung der Zustand des Systems auf eine Weise verändert, die nicht beeinflusst und nur mit gewisser Wahrscheinlichkeit vorhergesagt werden kann.

Die sogenannte „Präparation“ eines Systems in einem bestimmten Zustand erfolgt durch die gleichzeitige Messung eines maximalen Satzes kommensurabler physikalischer Größen.[1] Nach dieser Messung befindet sich das System in einem wohldefinierten gemeinsamen Eigenzustand aller dieser Messgrößen, sodass diese bestimmte Werte besitzen. Wenn das System nicht schon vorher in einem solchen gemeinsamen Eigenzustand war, verursacht die Messung schlagartig eine Zustandsreduktion, auch Kollaps genannt, sodass danach alle anderen möglichen Messwerte dieser Größen die Wahrscheinlichkeit Null haben. Die Zustandsreduktion ist kein physikalischer Vorgang, sondern beschreibt die durch die Messung eingetretene genauere Information des Beobachters.[2] Zwischen zwei Messungen ist die Zeitentwicklung des Zustands durch eine Bewegungsgleichung deterministisch festgelegt; im nichtrelativistischen Fall durch die Schrödinger-Gleichung, im relativistischen, abhängig von Spin und Masse des Teilchens, durch die Klein-Gordon-Gleichung (Spin 0), die Dirac-Gleichung (massiv, Spin ½), die Weyl-Gleichung (masselos, Spin ½), die Proca-Gleichung (massiv, Spin 1) oder die Maxwell-Gleichungen (masselos, Spin 1).

Mathematische Darstellung Bearbeiten

Mathematisch wird der quantenmechanische Zustand meist durch einen auf den Betrag 1 normierten Zustandsvektor im Hilbertraum beschrieben. Mithilfe einer Basis des Hilbertraums mit diskretem Index kann dieser Zustandsvektor als Linearkombination der Basisvektoren geschrieben werden, oder bei einer Basis mit kontinuierlichem Index als Wellenfunktion. Zu jedem der (bei gegebenem Zustand) möglichen Messwerte einer physikalischen Größe besitzt der zugehörige Zustandsvektor mindestens eine Komponente. Die Stärke einer Komponente, ihre „Amplitude“, bestimmt die Wahrscheinlichkeit, mit der der betreffende Messwert als Ergebnis einer Messung auftritt; diese ist das Betragsquadrat der Amplitude.

Die Zuordnung von einem gegebenen Zustand zu einem Zustandsvektor ist nicht eindeutig, denn Zustandsvektoren, die sich nur durch einen konstanten komplexen Phasenfaktor unterscheiden, beschreiben denselben physikalischen Zustand. Jede Linearkombination der Zustandsvektoren zweier verschiedener Zustände ist (nach Normierung) selbst ein möglicher Zustandsvektor, der als kohärente Überlagerung der beiden Zustände bezeichnet wird. Diese Überlagerung ist kohärent, weil je nach der (relativen) Phase der beiden komplexen Koeffizienten der Linearkombination ein physikalisch verschiedener Zustand entsteht. Die theoretischen Grundlagen, um die quantenmechanischen Zustände als Hilbertraumvektor mit der Möglichkeit der Linearkombination zu beschreiben, wurden 1925 von Werner Heisenberg in der Matrizenmechanik entwickelt, die Beschreibung als Wellenfunktion in der Orts- oder Impulsbasis 1926 von Erwin Schrödinger in der Wellenmechanik.

Die beiden Beschreibungen als Vektor oder Wellenfunktion beruhen auf derselben tiefer liegenden mathematischen Struktur. In dieser wird jeder Zustand mit einer mathematischen Funktion identifiziert, die jedem der Operatoren, die eine Messgröße darstellen, eine reelle Zahl zuordnet. Der Zustand ist also eine Abbildung von der Menge der Operatoren in die Menge der reellen Zahlen. Der Funktionswert ist der für den betreffenden Zustand gültige Erwartungswert der möglichen Messergebnisse, die bei einzelnen Messungen dieser Größe erhalten werden können. Nach dieser Begriffsbildung, die 1931 von John von Neumann ausgearbeitet wurde, ist der Zustand im Allgemeinen durch einen Dichteoperator zu beschreiben. Dies gilt auch noch, wenn statt eines bestimmten Zustands ein inkohärentes Gemisch verschiedener Zustände vorliegt, wie z. B. nach der in realen Experimenten meistens nicht ganz idealen Präparation, aber auch in der Theorie der Vielteilchensysteme in der Quantenstatistik. Man unterscheidet dann zwischen reinen und gemischten Zuständen. Ein reiner Zustand hat als Dichteoperator einen Projektionsoperator auf einen 1-dimensionalen Unterraum. Das entspricht genau der obigen Definition durch einen bis auf einen Phasenfaktor festgelegten Hilbertraumvektor. Die beliebige Phase ist damit aus dem Formalismus eliminiert. Der Dichteoperator für einen gemischten Zustand ist eine mit relativen Häufigkeiten, also reellen Zahlen zwischen Null und Eins, gewichtete Summe solcher Projektionsoperatoren auf verschiedene 1-dimensionale Unterräume.

Grundbegriffe Bearbeiten

Unterschied zur klassischen Physik Bearbeiten

Die Einführung von Wahrscheinlichkeiten verschiedener Ergebnisse anstelle einer eindeutigen Voraussage bedeutet eine grundsätzliche Abkehr von der klassischen Physik. Dort ist nämlich mit der Angabe des momentanen Systemzustands das Ergebnis jeder möglichen Messung eindeutig festgelegt (immer fehlerfreie Messung vorausgesetzt). Dies trifft für makroskopische Systeme (z. B. aus dem Alltag) im Allgemeinen sehr gut zu. Beispielsweise lassen sich einer Schrotkugel oder einem Sandkorn in jedem Moment mit praktisch eindeutiger Genauigkeit ein bestimmter Ort und eine bestimmte Geschwindigkeit zuschreiben.

Für immer kleinere Systeme wird dies jedoch zunehmend falsch, für ein Ensemble quantenmechanischer Teilchen[3] ist es ausgeschlossen. Die streng gültige Heisenbergsche Unschärferelation von 1927 besagt nämlich: liegt der Aufenthaltsort eindeutig fest, dann kann eine Messung der Geschwindigkeit mit gleicher Wahrscheinlichkeit jeden beliebigen Wert ergeben, und umgekehrt; d. h. zu jeder Zeit kann nur eine der beiden Größen eindeutig bestimmt werden. Diese Unbestimmtheit lässt sich auch durch das präziseste Präparieren des Systemzustands nicht beseitigen. Sie ist mathematisch rigoros, relativ einfach zu beweisen[4] und bildet eine zentrale begriffliche Grundlage der Physik.

Reiner Zustand und Zustandsgemisch Bearbeiten

Zusätzliche Unsicherheit über das zu erwartende Messergebnis entsteht, wenn der Zustand des Systems nicht eindeutig festgelegt ist. Das gilt z. B. für den häufigen Fall, dass das beobachtete System aus einer Anzahl gleichartiger Systeme herausgegriffen wird, die nicht alle im selben Zustand präpariert sind. Die unterschiedlichen Zustände, in denen sich das beobachtete System (mit möglicherweise unterschiedlicher Wahrscheinlichkeit) befinden kann, bilden dann ein Zustandsgemisch.

Hier ließe sich die Unsicherheit über die zu erwartenden Messergebnisse verringern, indem nur Systeme im selben Zustand zur Messung ausgewählt werden. Zur Verdeutlichung des Unterschieds zum Zustandsgemisch wird ein eindeutig präparierter Zustand gelegentlich auch als reiner Zustand bezeichnet.

Im Folgenden bedeutet Zustand hier immer reiner Zustand.

Eigenzustand Bearbeiten

Ein Zustand, in dem für eine bestimmte Messgröße der zu erwartende Messwert eindeutig festliegt, heißt Eigenzustand zu dieser Messgröße. Beispiele sind

  1. das Teilchen ist an einem Ort lokalisiert (Ortseigenzustand)
  2. das Teilchen hat eine bestimmte Geschwindigkeit oder Impuls (Impulseigenzustand)
  3. das Teilchen ist in einem gebundenen Zustand bestimmter Energie (Energieeigenzustand).

Die Beispiele 1 und 2 sind streng genommen (wegen einer mathematischen Subtilität: des Vorliegens eines „kontinuierlichen Spektrums“) nur im Grenzfall zulässig (beim Beispiel 2 etwa im „monochromatischen Grenzfall“ eines unendlich ausgedehnten Wellenpakets, während das Beispiel 1 daraus durch eine Fouriertransformation erhalten wird). Beide Beispiele spielen eine bedeutende Rolle in der theoretischen Beschreibung.[5]

Beispiel 3 ist ein Zustand, in dem eine physikalische Größe (nämlich die Energie) einen bestimmten Wert hat, während sowohl für den Ort als auch für den Impuls nur Wahrscheinlichkeiten für verschiedene Messergebnisse angegeben werden können (für den Ort z. B. durch das Orbital, für den Impuls durch das Betragsquadrat der Fouriertransformierten der betreffenden Ortswellenfunktion).

Superposition von Zuständen Bearbeiten

Für ein Teilchen in Gestalt eines Massepunkts ist in der klassischen Mechanik der Zustand durch den Ort und den Impuls gegeben, also durch einen Punkt im sechsdimensionalen Phasenraum. Da bei Teilchenstrahlen aber auch Interferenzeffekte beobachtet werden (Welle-Teilchen-Dualismus), muss auch die Möglichkeit, dass die Superposition (oder Überlagerung, Linearkombination mit komplexen Faktoren) mehrerer Zustände einen möglichen Zustand bildet, zugelassen werden (siehe Materiewellen). So ist jeder Zustand, für den die Quantenmechanik zu einer Messgröße mehrere mögliche Messwerte mit je eigenen Wahrscheinlichkeiten voraussagt, eine Superposition derjenigen Zustände, die die zu diesen Messwerten gehörigen Eigenzustände sind. Die Wahrscheinlichkeit, einen bestimmten dieser Eigenwerte als Messergebnis zu erhalten, ist durch das Betragsquadrat seiner Wahrscheinlichkeitsamplitude festgelegt. Die Wahrscheinlichkeitsamplitude ist der (im Allgemeinen komplexe) Faktor, mit dem der betreffende Eigenzustand in dieser Superposition vorkommt.

Es gibt keinen prinzipiellen Unterschied zwischen den Eigenschaften, Superpositionszustand oder Basis- oder Eigenzustand zu sein: Jeder Zustand eines Systems kann als Basiszustand einer geeignet gewählten Basis betrachtet werden, aber auch als Superpositionszustand von den Basisvektoren einer anderen Basis. Jeder Zustand kann mit jedem anderen Zustand desselben Systems überlagert werden, und jeder Zustand kann als Überlagerung anderer Zustände dargestellt werden. Zustände, die als Superposition definiert wurden, sind also auch reine Zustände im obigen Sinn. Gelegentlich werden sie jedoch ungenau als gemischte Zustände angesprochen, was aber vermieden werden sollte, weil Verwechslungen mit dem Begriff Zustandsgemisch auftreten könnten.

Zustand und statistisches Gewicht Bearbeiten

Der quantenmechanische Phasenraum wird durch die Möglichkeit der Superposition erheblich mächtiger als der Phasenraum der klassischen Mechanik für dasselbe System. Als Maß dieses erweiterten Raumes gilt in der statistischen Quantenphysik aber nicht die Größe dieser Menge selbst, sondern ihre Dimension;[6] das ist die kleinstmögliche Zahl der Zustände, aus denen sich durch Superposition alle überhaupt möglichen Zustände des Systems ergeben können. Innerhalb dieser kleinstmöglichen Teilmenge ist demnach keiner der Zustände als Superposition der anderen darstellbar, deshalb sind sie linear unabhängig und bilden eine Basis des ganzen Phasenraums.

Im Vergleich mit der Zustandsdichte in der klassischen statistischen Physik zeigt sich, dass jeder quantenmechanische Zustand einer solchen Basis das „Phasenraumvolumen“   belegt, wobei   die Anzahl unabhängiger Ortskoordinaten ist und   das Plancksche Wirkungsquantum. Die physikalische Dimension dieses „Volumens“ ist für   die einer Wirkung = Energie mal Zeit, oder = Ort mal Impuls.

Mathematische Darstellung Bearbeiten

Mathematische Grundlagen Bearbeiten

Zu einem allgemeineren Begriff eines quantenmechanischen Zustands kommt man, wenn der Begriff nicht wie oben als Ausgangspunkt der Beschreibung definiert wird, sondern aus allgemeineren Annahmen abgeleitet wird. Dem mathematisch strikten Aufbau der Quantenmechanik wird nur zugrunde gelegt, dass es physikalische Größen gibt, die an einem physikalischen System gemessen werden können, wobei sie je nach Zustand des Systems bestimmte Werte zeigen. Die physikalischen Größen haben (wegen der Möglichkeiten der Produktbildung (insbesondere Vertauschungsrelationen) und Linearkombination etc.) eine algebraische Struktur und bilden u. B. eine Untermenge einer C*-Algebra.[7] Ihre Werte sind eine Untermenge der komplexen Zahlen  . Der Zustand des Systems ist diejenige Abbildung der C*-Algebra auf  , die jeder physikalischen Größe (unter Wahrung der Linearität) ihren Erwartungswert zuweist.[8]

Diese Abbildung ist in mathematisch strikter Benennung ein lineares Funktional auf der Algebra der Observablen. Damit eine Abbildung   von der C*-Algebra   auf die komplexen Zahlen   einen quantenmechanischen Zustand darstellt, muss das Funktional positiv und normiert sein, d. h., es muss gelten:   und  . Dabei ist   das Einselement der Algebra.

Die Menge dieser Zustände ist eine konvexe Menge, das heißt, wenn   und   Zustände sind und  , dann ist auch   ein Zustand. Zustände  , die sich nicht mit einem   so in zwei andere zerlegen lassen, heißen Extremalpunkte der Menge. Sie haben die Eigenschaften der oben mittels Hilbertraumvektoren definierten reinen Zustände. Alle anderen Elemente der Menge sind Zustandsgemische, die als Summe oder Integral über reine Zustände ausgedrückt werden können.

Jedem Zustand kann mittels der GNS-Konstruktion eine Hilbertraum-Darstellung   zugeordnet werden. Jeder normierte Vektor   im Hilbertraum,  , entspricht einem reinen Zustand   auf   und umgekehrt kann jedem reinen Zustand ein Vektor zugeordnet werden. Es gilt

 

wobei   das Skalarprodukt im Hilbertraum aus   und   bezeichnet. Die reinen Zustände bilden die irreduziblen Darstellungen im Hilbertraum.

Physikalische Implikationen Bearbeiten

Für die mathematische Darstellung des oben physikalisch definierten reinen Zustands eignen sich zwei Formen, die zueinander äquivalent sind:

Zustandsvektor und Kovektor Bearbeiten

Der Zustandsvektor   im Hilbertraum   ist, wie auch ein Ortsvektor  , ein mathematisches, abstraktes Objekt. So wie der Ortsvektor in einer Basisdarstellung

 

geschrieben werden kann, wobei   drei zueinander orthogonale Vektoren im dreidimensionalen euklidischen Raum sind, kann der Zustandsvektor in jeder beliebigen vollständigen Orthonormalbasis entwickelt werden. Für diese Entwicklung ist es nötig, den Kovektor   einzuführen, der als Bra-Vektor im Dualraum zum Hilbertraum ansässig ist. Mathematisch betrachtet ist ein Bra-Vektor ein lineares Funktional, das auf dem Hilbertraum in die komplexen Zahlen opereriert. Wie für Vektoren im euklidischen Raum gilt analog als Entwicklung

 

mit  . Da die Basisvektoren   eine Orthonormalbasis bilden, gilt

 

mit dem Kronecker-Delta   und

 

mit der unendlichdimensionalen Einheitsmatrix  . Da in der Quantenmechanik – im Gegensatz zum euklidischen Vektorraum – auch kontinuierliche Basen auftreten können, gilt für eine Entwicklung in einer kontinuierlichen Basis entsprechend

 

mit der Dirac-Distribution   beziehungsweise

 .

Um in der Schreibweise nicht zwischen kontinuierlichen und diskreten Basen unterscheiden zu müssen, wird teilweise das Symbol ⨋ verwendet.

Wenn der Zustandsvektor in einer Basis dargestellt wird, dann zumeist in der Eigenbasis eines hermiteschen Operators, der mit einer physikalischen Messgröße identifiziert wird. Die Eigenzustände eines solchen Operators werden häufig mit dem Formelzeichen der entsprechenden physikalischen Größe bezeichnet:

  1.   bezeichnet den Ortseigenzustand eines Teilchens,
  2.   den Impulseigenzustand,
  3.   den Energieeigenzustand. Dabei kann   sowohl diskrete Werte annehmen (z. B. bei gebundenen Zuständen) als auch kontinuierliche Werte (z. B. bei ungebundenen Zuständen).
  4. Wird einem Eigenwert eine Quantenzahl zugeordnet (z. B. Quantenzahl   für das  -te Energieniveau  , Quantenzahlen   für Betrag und z-Komponente des Drehimpulses), so wird der zugehörige Eigenzustand angegeben durch Angabe der Quantenzahl(en) oder durch ein extra vereinbartes Symbol (Beispiele:  ).

Damit die Wellenfunktion nach der Bornschen Regel als Wahrscheinlichkeitsamplitude aufgefasst werden kann, ist es nötig, den Zustandsvektor zu normieren. Das heißt, für einen physikalischen Zustand muss

 

gelten. Allerdings legt dies den Vektor   nicht umkehrbar eindeutig fest, sondern nur bis auf einen konstanten Faktor  , also eine komplexe Zahl mit Betrag Eins. Diese wird auch als quantenmechanische Phase des Zustands bzw. Zustandsvektors bezeichnet. Die Vektoren  , die alle denselben Zustand beschreiben, spannen einen eindimensionalen Unterraum (Strahl) auf.

Wellenfunktion Bearbeiten

Die Wellenfunktionen   beziehungsweise   sind die Entwicklungskoeffizienten des Zustandsvektors in der Orts- beziehungsweise Impulsbasis:[12]

 
 

Messung Bearbeiten

Eine messbare physikalische Größe wird durch einen Operator dargestellt, der im Hilbertraum eine lineare Transformation bewirkt. Messgröße   und zugehöriger Operator   werden zusammengefasst Observable genannt. Die möglichen Messergebnisse   sind die Eigenwerte des Operators. Das heißt, es gilt für einen Eigenzustand   des Operators

 

Da alle möglichen Messergebnisse reelle Zahlen sind, muss der Operator hermitesch sein, d. h. folgende Bedingung erfüllen:

 

Bei einem Zustand, der nicht Eigenzustand des betreffenden Operators ist, können Messergebnisse nicht sicher, sondern nur mit Wahrscheinlichkeiten vorhergesagt werden. Diese Wahrscheinlichkeiten berechnen sich für jeden Eigenwert als Betragsquadrat aus dem Skalarprodukt des betreffenden Eigenvektors der Messgröße mit dem Zustandsvektor des Systems:

 

Nach der Messung ist der Zustandsvektor auf den zum entsprechenden Eigenwert zugehörigen Unterraum kollabiert, das heißt

 

Dadurch ist gleichzeitig das System im Eigenzustand   präpariert, denn nach dieser Messung liegt es genau in diesem Zustand vor. Eine instantan erfolgende erneute Messung dieser Observable ergibt daher sicher wieder denselben Wert.

Als Erwartungswert   wird der Mittelwert vieler Einzelmessungen der Observable an immer gleichen Systemen im selben Zustand   bezeichnet. Aus dem Spektrum aller möglicher Einzelergebnisse   und ihren Wahrscheinlichkeiten   ergibt sich:

 .

Phasenfaktor und Superposition Bearbeiten

Linearkombinationen zweier Zustandsvektoren, also z. B.   mit komplexen Zahlen  , die die Bedingung   erfüllen, beschreiben ebenfalls erlaubte Zustände (s. o. Superposition von Zuständen). Hierbei ist, anders als bei einem einzelnen Zustandsvektor, die relative Phase der Faktoren, d. h. die komplexe Phase   im Quotienten  , nicht mehr beliebig; je nach Phase hat der Überlagerungszustand   verschiedene physikalische Eigenschaften.[13] Daher wird von kohärenter Superposition gesprochen, weil wie bei optischer Interferenz mit kohärentem Licht nicht die Betragsquadrate, sondern die „erzeugenden Amplituden“ selbst, also   und  , superponiert werden.

Zustandsgemisch und Dichteoperator Bearbeiten

Ein Zustandsgemisch, in dem sich das System mit Wahrscheinlichkeit   im Zustand   (mit  ) befindet, wird durch den Dichteoperator   dargestellt, das ist die Summe der entsprechenden Projektionsoperatoren:

 

Im Gegensatz zur kohärenten Superposition bleibt der Dichteoperator unverändert, wenn die im Gemisch vertretenen Zustände   mit beliebigen Phasenfaktoren versehen werden; im Zustandsgemisch werden die Zustände also inkohärent überlagert.

Der Erwartungswert einer Messung der Observable   ist dementsprechend die gewichtete inkohärente Summe der Erwartungswerte der einzelnen Bestandteile des Gemischs:

 

Dies kann auch als Spur des Operators   dargestellt werden:

 .

Die letzte Gleichung hat den Vorzug, dass sie gleichermaßen für Gemische und für reine Zustände gilt. (Bei einem reinen Zustand   ist   der zum Zustand gehörige Projektionsoperator.)

Der Dichteoperator wird auch als „Zustandsoperator“ bezeichnet.

Beispiele Bearbeiten

  • Die Zustände eines Teilchens im (eindimensionalen) Kasten der Breite   (von 0 bis  ) können als Superpositionen von Eigenzuständen des Hamiltonoperators   geschrieben werden. Dessen Eigenzustände im Ortsraum sind
 
und die zugehörigen Energieeigenwerte zu   sind
 
  • Für Teilchen in einem Zentralfeld können die Energieeigenzustände so gewählt werden, dass sie auch Eigenzustände des Drehimpulsoperators sind. Dann tragen sie alle drei Quantenzahlen  :
 
Aufgrund der Energie-Entartung bezüglich der Quantenzahl   reicht im Allgemeinen eine Messung der Energie nicht aus, um den Zustand eindeutig zu bestimmen.
  • Die Spineigenzustände zu   eines (fermionischen) Teilchens werden einfach als   und   geschrieben.
  • Der Zustand eines Systems, das durch den s-Wellen-Zerfall eines einzigen gebundenen Elementarteilchensystems in zwei Spin-1/2-Teilchen entsteht, ist  . Durch die Messung des Spins bei einem Teilchen kollabiert der Zustand instantan, sodass eine unmittelbar folgende Messung beim anderen Teilchen ein eindeutig korreliertes Ergebnis (nämlich das jeweils gegenteilige) liefert. Dies ist ein Beispiel für Quantenverschränkung.

Reine Zustände und Zustandsgemische Bearbeiten

In der Quantenmechanik und der Quantenstatistik wird zwischen reinen Zuständen und Zustandsgemischen unterschieden. Reine Zustände stellen den Idealfall einer maximalen Kenntnis der beobachtbaren Eigenschaften (Observablen) des Systems dar. Häufig ist aber nach der Präparation oder aufgrund von Messungenauigkeiten der Zustand des Systems nur unvollständig bekannt (Beispiel: der Spin des einzelnen Elektrons in einem unpolarisierten Elektronenstrahl).[14] Dann können den verschiedenen möglicherweise vorkommenden reinen Zuständen   oder den zugeordneten Projektionsoperatoren   nur Wahrscheinlichkeiten   zugeordnet werden (siehe unten). Solche unvollständig bekannten Zustände werden als Zustandsgemische bezeichnet. Zur Darstellung von Zustandsgemischen wird der Dichteoperator ρ verwendet, der auch Dichtematrix oder Zustandsoperator genannt wird.

Ein reiner Zustand entspricht einem eindimensionalen Unterraum (Strahl) in einem Hilbertraum. Die zugehörige Dichtematrix   ist der Operator für die Projektion auf diesen Unterraum. Sie erfüllt die Bedingung der Idempotenz, d. h.  . Zustandsgemische sind dagegen nur durch nicht-triviale Dichtematrizen darstellbar, d. h., dass   gilt. Eine Beschreibung durch einen Strahl ist dann nicht möglich.

Charakteristische Merkmale dieser Zustandsbeschreibung sind die Superponierbarkeit („Kohärenz“) der reinen Zustände und das daraus folgende Phänomen der Quantenverschränkung, während bei den Zustandsgemischen die Beiträge der verschiedenen beteiligten Zustände inkohärent summiert werden.

Das Ergebnis von Messungen an einem Quantensystem ergibt bei Wiederholung an einem exakt gleich präparierten System auch bei reinen Zuständen eine nicht-triviale Verteilung von Messwerten, die in der Quantenstatistik zusätzlich (inkohärent! [15]) mit den   gewichtet wird. Die Verteilung entspricht im Einzelnen dem quantenmechanischen Zustand   (oder  ) und der Observablen   für den Messprozess (  repräsentiert i. W. die Messapparatur). Für reine Zustände   folgt aus der Quantenmechanik: Der Mittelwert der durch Wiederholung erzeugten Messreihe und der quantenmechanische Erwartungswert   sind identisch.

Für das Ergebnis der Messungen ist also im Unterschied zur klassischen Physik selbst bei reinen (also vollständig bekannten) quantenmechanischen Zuständen nur eine Wahrscheinlichkeit angebbar (deshalb heißt es im Folgenden nicht das Resultat, sondern das zu erwartende Resultat, s. u.). Für Zustandsgemische gilt wegen der   eine zusätzliche (inkohärente!) Unbestimmtheit:  

Also selbst das zu erwartende Resultat des Ausgangs einer einzelnen Messung kann nur in Spezialfällen (etwa  ) sicher vorhergesagt werden. Nur die (speziellen!) Eigenzustände   der betrachteten Observable   oder die zugehörigen Eigenwerte   kommen bei gegebenem   überhaupt als Messwerte in Frage, und selbst in dem oben angegebenen Fall eines reinen Zustands, etwa  , d. h. selbst bei vollständig bekannter Wellenfunktion, können für die verschiedenen Eigenzustände   bei gegebenem   nur Wahrscheinlichkeiten angegeben werden,   obwohl der Zustand   bei einer unmittelbar anschließenden Folgemessung mit derselben Apparatur genau reproduziert wird. Unbekannte Zustände können dagegen nicht durch Messung bestimmt werden (siehe No-Cloning-Theorem).[16] Es gilt ferner
          
d. h., dass jetzt nicht die zu den Projektionsoperatoren gehörigen Kets superponiert werden, sondern die Projektionsoperatoren selbst mit Wahrscheinlichkeiten versehen werden.

Insgesamt gilt also:  , wobei sich der Index i auf die (reinen) Zustände, der Index k dagegen auf die Messgröße bezieht.

(Wenn auch die   oder die   nur „ungefähr“ bekannt wären, müsste die   noch mit zwei entsprechenden Wahrscheinlichkeitsfaktoren,   oder   multipliziert werden.)

Informationsentropie Bearbeiten

Die Informationsentropie des Zustandes oder die mit der Boltzmannkonstante multiplizierte Von-Neumann-Entropie ist ein quantitatives Maß für die Unkenntnis, die hinsichtlich der möglichen Aussage über das Vorliegen eines bestimmten reinen Zustands besteht. Die Von-Neumann-Entropie,  , ist gleich   für Zustandsgemische. Für reine Zustände ist sie Null (man beachte   für  ). Dabei wurden Boltzmann'sche Einheiten benutzt, insbesondere ist   die Boltzmann-Konstante. In Shannon'schen Einheiten wird dagegen diese Konstante durch Eins und der natürliche Logarithmus   durch den binären Logarithmus   ersetzt.

Siehe auch Bearbeiten

Einzelnachweise und Fußnoten Bearbeiten

  1. Wolfgang Nolting: Grundkurs Theoretische Physik 5/1; Quantenmechanik – Grundlagen. 5. Auflage. Springer, Berlin Heidelberg 2002, ISBN 3-540-42114-9, S. 119.
  2. F. H. Fröhner: Missing Link between Probability Theory and Quantum Mechanics: the Riesz-Fejér Theorem. In: Zeitschrift für Naturforschung. 53a (1998), S. 637–654 (doi:10.1515/zna-1998-0801)
  3. Für ein einzelnes Elektron in einem Teilchenstrahl ist zwar eine gleichzeitige „scharfe“ registrierende Messung von Impuls und Ort durch ein-und-dieselbe Messapparatur („Zähler“) möglich. In einem Magnetspektrometer z. B. wird sogar der Auftreffort als diejenige Messgröße genutzt, aus der der Impuls berechnet werden kann. Eine Vorhersage, welcher Zähler aus einer vorgegebenen Anordnung, die alle Möglichkeiten abdeckt, beim anschließend folgenden Elektron anspricht, oder zumindest die Gleichzeitigkeit „scharfer“ Mittelwerte von Ort und Impuls bei einer Messreihe, sind dagegen ausgeschlossen. Vgl. Feynman-Vorlesungen über Physik. 3 Bände, ISBN 0-201-02115-3 (dt. Vorlesungen über Physik. Oldenbourg Wissenschaftsverlag, München 2007, ISBN 978-3-486-58444-8), zuerst 1963/1965 bei Addison/Wesley. In Band 3, Quantenmechanik, Kap. 16, wird ausführlich die Begrifflichkeit der Heisenbergschen Unschärferelation behandelt.
  4. Siehe Artikel Heisenbergsche Unschärferelation oder zum Beispiel Albert Messiah Quantenmechanik, de Gruyter 1978, Band 1, S. 121ff
  5. Bei ungebundenen Eigenzuständen des Energieoperators treten analoge Grenzwertprobleme wie bei Beispiel 1 und 2 (s. u.) auf.
  6. Diese Dimension kann endlich sein oder abzählbar-unendlich (wie im Standardfall des Hilbertraums) oder sogar überabzählbar-unendlich (wie bei den Gelfandschen Raumtripeln, einer Verallgemeinerung des Hilbertraums zur besseren Erfassung kontinuierlicher Spektren).
  7. Auch Systeme mit physikalischen Größen, die durch unbeschränkte Operatoren (wie z. B. den Ortsoperator) beschrieben werden, lassen sich C*-algebraisch behandeln, statt der unbeschränkten Operatoren, die nicht Teil der C*-Algebra sind, werden geeignete beschränkte Funktionen davon betrachtet, z. B. die durch sie generierten unitären Gruppen.
  8. Walter Thirring: Quantenmechanik von Atomen und Molekülen. In: Lehrbuch der Mathematischen Physik. 3. Auflage. Band 3. Springer, Wien 1994, ISBN 978-3-211-82535-8, S. 26.
  9. W. Heisenberg: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. In: Zeitschrift für Physik. Band 33, 1925, S. 879–893.Digitalisat
  10. P.A.M. Dirac: On the theory of quantum mechanics. In: Proceedings of the Royal Society of London A. Band 112, 1926, S. 661–677.
  11. E. Schrödinger: „Quantisierung als Eigenwertproblem I“, Annalen der Physik 79 (1926), 361–376. E. Schrödinger: „Quantisierung als Eigenwertproblem II“, Annalen der Physik 79 (1926), 489–527. E. Schrödinger: „Quantisierung als Eigenwertproblem III“, Annalen der Physik 80 (1926), 734–756. E. Schrödinger: „Quantisierung als Eigenwertproblem IV“, Annalen der Physik 81 (1926), 109–139
  12. Torsten Fließbach: Quantenmechanik. 4. Auflage. Spektrum, München 2005, ISBN 3-8274-1589-6, S. 231.
  13. Beispiel: Wenn   die Eigenzustände zum Spin „auf“ oder „ab“ in z-Richtung sind, dann ist   der Eigenzustand „auf“ in x-Richtung, aber   der Eigenzustand „auf“ in y-Richtung. (Der Normierungsfaktor wurde fortgelassen.)
  14. Man stelle sich die praktisch unmögliche Aufgabe vor, den Vielteilchenzustand   eines Systems aus N=1023 Elektronen zu bestimmen.
  15. „Inkohärent“ deshalb, weil die   mit einem quadratischen Ausdruck in den   gewichtet werden
  16. Das heißt unter anderem, dass die   nicht durch Angabe der   und der   bestimmt werden können.