Hauptmenü öffnen

Wurzel (Mathematik)

mathematische Funktion
(Weitergeleitet von Kubikwurzel)
Grafische Darstellung der Quadratwurzel-Funktion
In doppeltlogarithmischer Auftragung werden die -ten Wurzeln zu Geraden.

In der Mathematik versteht man unter Wurzelziehen oder Radizieren die Bestimmung der Unbekannten in der Potenz

Hierbei ist eine natürliche Zahl (meist größer als 1) und ein Element aus einem Körper (häufig eine nichtnegative reelle Zahl). Das Ergebnis des Wurzelziehens bezeichnet man als Wurzel oder Radikal (von lat. radix „Wurzel“). Das Radizieren ist eine Umkehrung des Potenzierens.[1][2] Im Fall spricht man von Quadratwurzeln, bei von Kubikwurzeln. Wurzeln werden mit Hilfe des Wurzelzeichens notiert, im Beispiel ist die Wurzel bzw. das Radikal.

Definition, Sprech- und SchreibweisenBearbeiten

Es sei   eine natürliche Zahl. Ist   eine nichtnegative reelle Zahl, so besitzt die Gleichung

 

genau eine nichtnegative reelle Lösung. Diese wird als  -te Wurzel aus   bezeichnet. Man schreibt dafür:

 

Hierbei bezeichnet man

  •   als Wurzel, Radikal oder Radix,
  •   als Wurzelzeichen,
  •   als Wurzelexponent,
  •   als Radikand.[3][4]

Gelegentlich betrachtet man auch den Fall  , wobei dann einfach   gilt.

Quadrat- und KubikwurzelBearbeiten

Üblicherweise wird die zweite Wurzel als Quadratwurzel oder einfach nur als die Wurzel bezeichnet und der Wurzelexponent weggelassen:

 

Die Wurzel mit dem Wurzelexponenten 3 (dritte Wurzel) bezeichnet man auch als Kubikwurzel.

Beispiel:

 

(Sprich: Die dritte Wurzel aus 8 ist 2 oder Die Kubikwurzel aus 8 ist 2)

Mathematische GrundlagenBearbeiten

Die folgende Beschreibung des Radizierens als einer rechtseindeutigen Wurzelfunktion bezieht sich auf den angeordneten Körper   der reellen Zahlen, also gewissermaßen auf die Schulmathematik. Ein allgemeinerer Wurzelbegriff, der den hier beschriebenen umfasst, wird im Artikel Adjunktion (Algebra) behandelt.[5]

Zusammenhang mit PotenzenBearbeiten

Das Radizieren mit dem Wurzelexponenten   und das Potenzieren mit dem Exponenten   heben sich gegenseitig auf. Gemäß obenstehender Definition der Wurzel gilt für alle reellen Zahlen   und für alle natürlichen Zahlen  :

 

Das Radizieren mit dem Wurzelexponenten   wirkt wie das Potenzieren mit dem Exponenten  . Nach den Rechenregeln für Potenzen gilt nämlich:

 

Daher kann das Radizieren mit dem Wurzelexponenten n auch als Potenzieren mit dem Exponenten 1/n interpretiert werden:[2]

 

Eindeutigkeit von Wurzeln aus positiven ZahlenBearbeiten

Obwohl die eingangs genannte Fragestellung bei geradzahligen Wurzelexponenten und positiven Radikanden zwei Lösungen mit unterschiedlichen Vorzeichen besitzt, steht die Schreibweise mit dem Wurzelzeichen   grundsätzlich für die positive Lösung.[6][7] Beispielsweise hat die Gleichung   die beiden Lösungen   und  . Der Term   hat jedoch den Wert +2 und nicht den Wert −2. Allgemein gilt daher für geradzahlige Wurzelexponenten

 

Wurzeln aus negativen ZahlenBearbeiten

Die Behandlung von Wurzeln aus negativen Zahlen ist nicht einheitlich. Es gilt beispielsweise

 

und   ist die einzige reelle Zahl, deren dritte Potenz   ist. Allgemein ergeben sich für ungerade Potenzen negativer Zahlen wieder negative Zahlen.

Bezüglich der ungeraden Wurzeln aus negativen Zahlen werden folgende Positionen vertreten:

  • Wurzeln aus negativen Zahlen sind generell „verboten“. Beispielsweise ist   also undefiniert. Die Lösung der Gleichung   wird geschrieben als  .
  • Wurzeln aus negativen Zahlen sind erlaubt, wenn der Wurzelexponent eine ungerade Zahl ist (3, 5, 7, …). Für ungerade Zahlen   gilt generell
 .
Diese Festlegung ist mit manchen Eigenschaften der Wurzeln, die für positive Radikanden gelten, nicht vereinbar. Beispielsweise ist
 
Auch funktioniert diese Festlegung nicht mit der Gleichung  , da der Logarithmus von negativen Zahlen nicht definiert ist (  darf also nicht negativ sein).

Wurzeln zu geraden Exponenten aus negativen Zahlen können keine reellen Zahlen sein, weil gerade Potenzen reeller Zahlen nie negativ sind. Es gibt keine reelle Zahl  , sodass  , somit kann man auch keine Wurzel   finden, die in den reellen Zahlen liegt. Der Bedarf für Wurzeln aus negativen Zahlen führte zur Einführung der komplexen Zahlen;[8] allerdings gibt es beim Wurzelbegriff im Bereich der komplexen Zahlen gewisse Schwierigkeiten mit der eindeutigen Auszeichnung einer der Wurzeln, siehe unten.

Die WurzelgesetzeBearbeiten

Die Rechenregeln für Wurzeln ergeben sich aus jenen für Potenzen.

Für positive Zahlen   und   und   gelten die folgenden Rechengesetze:

  • Produktregel:  
  • Quotientenregel:  
  • "Verschachtelungsregel" oder Iterationsregel:  
  • Definition für gebrochenen Exponenten:  
  • Definition für negativen Exponenten:  
  • Bei gleichem Radikand gilt:  

Bei negativen Zahlen   und   dürfen diese Rechengesetze nur angewendet werden, wenn   und   ungerade Zahlen sind. Bei komplexen Zahlen sind sie gänzlich zu vermeiden, bzw. gilt die Gleichheit nur bei geeigneter Wahl der Nebenwerte. Anders gesagt: werden in einem Beispiel auf der linken Seite irgendwelche Wurzeln (bspw. nur Hauptwerte) ausgewählt, so gibt es für die rechte Seite geeignete Nebenwerte, die die Gleichheit erfüllen – linke und rechte Seite unterscheiden sich um eine Einheitswurzel.

GrenzwerteBearbeiten

Es gelten die folgenden Grenzwerte:

  •   für  
  •  
Dies folgt aus der Ungleichung  , die man mit Hilfe des binomischen Lehrsatzes zeigen kann.
  •  , wobei   eine beliebige, aber feste natürliche Zahl ist.
  •  ,
wie aus der Exponentialdarstellung von   hervorgeht.

WurzelfunktionenBearbeiten

Funktionen der Form

  oder allgemeiner  

heißen Wurzelfunktionen. Sie sind Potenzfunktionen, es gilt  .

BerechnungBearbeiten

Wurzeln können durch schriftliches Wurzelziehen bestimmt werden. Dieses Verfahren ähnelt der schriftlichen Division und basiert auf den binomischen Formeln. Es wurde bis in die 1960er Jahre am Gymnasium noch gelehrt, ist heute jedoch von geringer praktischer Bedeutung.

Rückführung auf andere FunktionenBearbeiten

Höhere Wurzeln aus positiven Zahlen   kann man wie jede Potenz durch Exponentialfunktion und Logarithmus ausdrücken:

 

Numerische BerechnungBearbeiten

Um einen Näherungswert für eine Wurzel zu erhalten, kann man mehrere Verfahren anwenden. Dazu gehören unter anderem das Intervallhalbierungsverfahren.

Ein weiteres Näherungsverfahren zur Berechnung von   ergibt sich, indem man mit dem Newton-Verfahren eine Nullstelle der Funktion

  annähert:
  1. Wähle einen (möglichst guten) Startwert  
  2. Iteriere nach der Vorschrift
 

Für   erhält man gerade das Heron-Verfahren.

Beispiel für eine Näherung für   nach dem obigen Iterationsverfahren:

Die Iterationsvorschrift lautet mit   und  

 .

Mit dem Startwert   erhält man:

Startwert: 2,000000000000
Schritt 1: 1,500000000000
Schritt 2: 1,296296296296
Schritt 3: 1,260932224741
Schritt 4: 1,259921860565
Schritt 5: 1,259921049895
Schritt 6: 1,259921049894

Methode der „Rechenkünstler“Bearbeiten

Man kann, wie es Rechenkünstler machen, eine Wurzel auch durch Abschätzung und Anwendung elementarer Zahlentheorie bestimmen, sofern bekannt ist, dass die Wurzel eine natürliche Zahl ist. Das lässt sich besonders gut am Beispiel der dritten Wurzel zeigen. Dazu muss man zwei Dinge wissen, nämlich die Größenordnung der Kubikzahlen, und die letzte Ziffer der Zahl:

1 1
8 2
27 3
64 4
125 5
216 6
343 7
512 8
729 9
1.000 10
1.000 10
8.000 20
27.000 30
64.000 40
125.000 50
216.000 60
343.000 70
512.000 80
729.000 90
1.000.000 100

Beispiele:

  • Die dritte Wurzel von 103.823:
    Die Zahl liegt zwischen 64.000 und 125.000, deshalb muss die Zehnerstelle der dritten Wurzel 4 sein. Die letzte Ziffer der Zahl ist eine 3, demnach ist die dritte Wurzel von 103.823 abgeschätzt 47.
  • Die dritte Wurzel von 12.167:
    Die Zahl liegt zwischen 8.000 und 27.000, deshalb muss die Zehnerstelle der dritten Wurzel 2 sein. Die letzte Ziffer der Zahl ist eine 7, demnach ist die dritte Wurzel von 12.167 abgeschätzt 23.

Das Ganze funktioniert aber nur dann, wenn man davon ausgehen kann, dass es sich bei der vorgegebenen Zahl um die dritte Potenz einer natürlichen Zahl handelt.

Bei den Aufgaben der Rechenkünstler geht es natürlich um viel höhere Potenzen mehrstelliger Zahlen – zum Beispiel die Berechnung der 25. Wurzel aus 880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.329.063.400.179.824.681.489.784.873.773.249 (Lösung: 1729) und extremere Aufgaben.

Wurzeln aus komplexen ZahlenBearbeiten

 
Die fünf fünften Wurzeln aus 1 + i√3 = 2 · eπ · i/3
 
Die drei Lösungen der Gleichung  in der komplexen  -Ebene (rotes, grünes, blaues Gitter). Das rote Netz bildet außerdem die Funktion   ab. Das große farbige  -Dreieck und seine drei  -Bilder dienen als Orientierungshilfe.

Die komplexen Zahlen   werden definiert durch die Adjunktion   der Lösung (Wurzel)   der Gleichung   zu den reellen Zahlen  . Fasst man die komplexen Zahlen als Ebene   auf, in der die reellen Zahlen als eine ausgezeichnete Gerade   die Ebene in zwei Halbebenen teilt und die positiven Zahlen sich rechts befinden, dann wird die Zahl   in die obere und   in die untere Halbebene platziert. Gleichzeitig mit dieser Orientierung wird der Nullpunkt   durch die Funktion   für wachsendes reelles   im mathematisch positiven Sinn (also entgegen dem Uhrzeigersinn) umlaufen, so dass   ist. Mit dieser Maßgabe lassen sich inhärent mehrdeutige Wurzeln im Komplexen auf eindeutige Real- und Imaginärteile (Hauptwerte) festlegen. Gleichwohl ist bei der Anwendung der Wurzelgesetze die dort erwähnte Sorgfalt zu beachten.

Als die  -ten Wurzeln einer komplexen Zahl   bezeichnet man die Lösungen der Gleichung

 .

Ist   in der Exponentialform   dargestellt, so sind die  -ten Wurzeln aus   genau die   komplexen Zahlen

 

Der Sonderfall   wird als  -te Kreisteilungsgleichung bezeichnet, die Lösungen als  -te Einheitswurzeln. Die Bezeichnung „Kreisteilungsgleichung“ erklärt sich, wenn man ihre Lösungen in der Gaußschen Ebene betrachtet: die  -ten Einheitswurzeln teilen den Kreis mit dem Radius   und dem Koordinatenursprung als Mittelpunkt in   gleiche Teile, sie bilden die Eckpunkte eines in den Kreis einbeschriebenen regulären  -Ecks.

Anders als bei reellen Zahlen kann man nicht so einfach eine der Wurzeln als die Wurzel auszeichnen; dort wählt man die einzige nichtnegative Wurzel. Man kann jedoch eine (holomorphe)  -te Wurzelfunktion für komplexe Zahlen, die keine nichtpositiven reellen Zahlen sind, über den Hauptzweig des komplexen Logarithmus definieren:

 

Die so ausgezeichnete Wurzel bezeichnet man auch als Hauptwert, die anderen als Nebenwerte.

Man kann den Logarithmus auch (unstetig) auf die negative reelle Achse fortsetzen, es gilt dann aber mit der so definierten Wurzelfunktion beispielsweise   und nicht  .[9]

LiteraturBearbeiten

WeblinksBearbeiten

 Wiktionary: Radikand – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikibooks: Komplexe Wurzeln und der Satz von Moivre – Ausführliche Erklärung mit Beweisen zum komplexen Wurzelziehen

EinzelnachweiseBearbeiten

  1. Die andere Umkehrung ist das Logarithmieren.
  2. a b T. Arens, F. Hettlich et al.: Mathematik. 2008, S. 46–47.
  3. Der Wurzelexponent   beim Radizieren entspricht dem Logarithmus beim Logarithmieren und dem Exponenten beim Potenzieren. Der Radikand   entspricht dem Numerus (Logarithmand) beim Logarithmieren und dem Ergebnis des Potenzierens
  4. Lothar Kusch: Mathematik, Band 1: Arithmetik. Algebra, Reihenlehre, Nomographie. W. Girardet, Essen 1975, ISBN 3-7736-2755-6, S. 162 f.
  5. Für die Schwierigkeiten mit der Rechtseindeutigkeit s. a. den § Wurzeln aus komplexen Zahlen.
  6. DIN 1302:1999 Allgemeine mathematische Zeichen und Begriffe
  7. EN ISO 80000-2:2013 Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik
  8. T. Arens, F. Hettlich et al.: Mathematik. 2008, S. 122.
  9. Dies lässt sich vermeiden mit der Auszeichnung derjenigen Wurzel unter allen, deren Argument   modulo   den absolut kleinsten Rest liefert. Bei Gleichheit zweier Werte ist dann der in der rechten (positiver Realteil) und der in der oberen Halbebene (positiver Imaginärteil) auszuwählen. Diese Regel ist mit den oben aufgestellten Regeln für reelle Radikanden voll kompatibel. Einige Beispiele:
     
    Als weiteres Beispiel sei   angegeben:
    Obwohl   und   und  
    ist           mit den absoluten Resten  
    des Arguments          

    weil die mittlere Wurzel   bei dem gleichen absoluten Rest   einen positiven Realteil hat.

    Außerdem bleiben bei dieser Definition die Wurzelgesetze für viele Wurzelexponenten auch bei komplexen Radikanden erhalten, solange für die so ausgewählten Wurzeln die Summen der Reste modulo   der Argumentwerte absolut unterhalb   bleiben.