Operationsverstärker

elektronischer Verstärker

Ein Operationsverstärker (Abk. OP, OPV, OPA, OpAmp, seltener OpVer, OV, OA) ist ein elektronisches Bauelement. Es handelt sich um einen gleichspannungsgekoppelten Verstärker mit einer sehr hohen Verstärkung. Der Name weist auf die frühere Verwendung in analogen Computern hin und geht auf den mathematischen Begriff des Operators bzw. der Rechen-Operation zurück. Das umfasst neben der Addition/Subtraktion auch komplexere Funktionen wie Differentiation, Integration oder Logarithmierung. Solche Operationen werden durch die äußere Beschaltung des Operationsverstärkers implementiert und erfolgen auf der Basis elektrischer Spannungen und Ströme. Operationsverstärker sind vielseitig einsetzbar. Die Grundschaltung des Operationsverstärkers ist der Differenzverstärker. Die eigentliche Funktion wird durch die äußere Beschaltung festgelegt.

Schaltsymbol eines Operationsverstärkers
Schaltsymbol Operationsverstärker
Links zwei Eingänge
* mit „−“ markiert: invertierend
* mit „+“ markiert: nichtinvertierend
Rechts der Ausgang
Hilfsanschlüsse, z. B. zur Speisung, werden im Allgemeinen nicht gezeigt
Schaltsymbol nach DIN EN 60617 Teil 13

Der ideale Operationsverstärker ist nicht realisierbar und kann in der Praxis nur angenähert werden. Daraus entsteht der Bedarf an einer großen Zahl und Variationsbreite angebotener Operationsverstärker, die sich in ihren Eigenschaften und Grenzwerten unterscheiden. Das häufigste Merkmal sind Eingänge mit hoher Impedanz, deren Spannungsdifferenz verstärkt auf einen Ausgang mit niedriger Impedanz gegeben wird. Dieses Ausgangssignal ist auf eine Massereferenz bezogen, die im Schaltbild meist nicht explizit gezeigt wird.

Operationsverstärker haben sich als verbreitete Bauelemente in der Elektronik etabliert und sind als Integrierter Schaltkreis sehr klein und günstig zu fertigen.

Der normale Operationsverstärker ist ein Spannungsverstärker, mit dem eine differenzielle Eingangsspannung auf einen massebezogenen Spannungs-Ausgang verstärkt wird. Es existieren aber auch andere Varianten, mit anderen Impedanzen der Anschlüsse, und/oder einer anderen Zahl von Ein- und Ausgängen. Um den normalen Operationsverstärker von anderen Varianten abzugrenzen, nennt man ihn oft VFA (engl. Voltage Feedback Amplifier), es sind aber auch andere Nomenklaturen in Verwendung wie VV-OPV nach Tietze-Schenk.[1]

In der Schaltungstheorie kann der ideale Operationsverstärker durch einen Nullor modelliert werden. Damit wird das Verhalten einer Schaltung nur noch durch die externe Beschaltung, das Rückkopplungsnetzwerk, bestimmt. Das drückt sich in den „goldenen Regeln des VFA“[2] aus: Durch die Eingänge fließt kein Strom und der Ausgang des gegengekoppelten OP versucht, die Spannungsdifferenz zwischen den beiden Eingängen auf 0 Volt zu bringen. Dadurch wird die Analyse bzw. Synthese der Schaltung besonders einfach, es bildet die reale Situation aber nur so weit ab, wie der reale Operationsverstärker dem Ideal entspricht.

GeschichteBearbeiten

Die ersten Differenzverstärker wurden um 1930 mit Elektronenröhren aufgebaut. Zusammen mit der Rückkopplungstheorie von Harold S. Black und den Arbeiten von Harry Nyquist und Hendrik Wade Bode waren damit zu Beginn des Zweiten Weltkriegs die wesentlichen Grundlagen für Operationsverstärker vorhanden. Diese wurden in den Bell Labs zunächst für wehrtechnische Anwendungen, wie etwa die Geschützsteuerung M9 gun director system, entwickelt.[3] Erfinder des Operationsverstärkers ist der Bell-Labs-Forscher Karl D. Swartzel Jr., der am 1. Mai 1941 ein Patent für einen summing amplifier in den Vereinigten Staaten anmeldete.[4]

Seinen englischen Namen „Operational Amplifier“ erhielt er 1947 von John Ragazzini;[5] die deutsche Bezeichnung „Operationsverstärker“ ist davon abgeleitet.[6]

Die Entwicklung nach dem Zweiten Weltkrieg verlief hin zu fertigen Modulen, zunächst noch auf Röhrenbasis, wie das Philbrick-Modell K2-W, das 1952 von der Firma George A. Philbrick Researches Inc. (GAP/R) entwickelt wurde.[7] Dieses Modul war der erste kommerziell vermarktete Operationsverstärker zu einem damaligen Preis von 20 US-Dollar und bestand aus zwei Elektronenröhren vom Typ 12AX7. Diese Röhren, duale Trioden, benötigten eine Versorgungsspannung von ±300 V bei 4,5 mA und erlaubten eine Aussteuerbarkeit des Ausganges von ±50 V.[8] Die Firma GAP/R publizierte zu dieser Zeit auch viele technische Applikationsschriften zu dem Thema wie die Firmenschrift Application Manual for Operational Amplifier for Modeling, Measuring, Manipulating, and Much Else,[9] die viele Anwendungsmöglichkeiten beleuchteten und maßgeblich zu dem weiten Einsatz der Operationsverstärker beitrugen. Auch das noch heute verwendete Schaltsymbol für den Operationsverstärker stammt von GAP/R.[10]

Als Ende der 1950er Jahre geeignete Transistoren verfügbar waren, wurden auf ihrer Basis erheblich kleinere und stromsparendere Module entwickelt, z. B. P65 und P45 von GAP/R. Diese Module verwendeten diskrete Germaniumtransistoren, der P45 war bereits auf einer gedruckten Leiterplatte realisiert.[11] Eine weitere Verkleinerung wurde durch die Hybridbauweise ermöglicht, bei der die ungehausten Transistorchips zusammen mit anderen Bauelementen auf einem Keramiksubstrat montiert wurden. Ein Beispiel dafür ist der HOS-050 von Analog Devices, der mit einem TO-8-Metallgehäuse versehen war.[12]

Mit der Entwicklung von Silicium als Halbleitermaterial sowie der integrierten Schaltkreise wurde die Fertigung eines kompletten Operationsverstärkers auf einem Chip möglich. Robert Widlar entwickelte 1962 bei Fairchild Semiconductor den µA702 und 1965 den µA709, der große Verbreitung fand.[13] Nach dem Weggang von Widlar wurde von Dave Fullagar 1968 bei Fairchild der Nachfolgetyp µA741 mit verbesserten Daten und Stabilität entwickelt.[14] Der Typ 741 ist der bekannteste Operationsverstärker und auch heute noch unter verschiedenen Bezeichnungen wie LM741, AD741 oder TL741 von verschiedenen Firmen mit der bekannt gewordenen Ziffernfolge „741“ in Produktion.

Später haben sich die flachen Gehäuse auch für Operationsverstärker durchgesetzt: Für kleine Leistungen kamen DIL-Gehäuse mit 8 oder mehr Pins (mehr, wenn mehrere Opamps in ein Gehäuse zusammengefasst werden) auf, für größere Leistungen Gehäuse mit Kühlflächen. Bald wurden die Gehäuse noch kleiner, z. B. SOT 23-5, ein nur 3 mm großes Plastegehäuse mit fünf Anschlüssen.

Der erste stromgegengekoppelte Operationsverstärker wurde von David Nelson bei der damaligen Firma Comlinear (wurde von National Semiconductor übernommen und gehört heute zu Texas Instruments), entwickelt[15] und zunächst in Hybridbauweise unter der Bezeichnung CLC103 verkauft. Als integrierte Schaltkreise wurden stromgegengekoppelte Operationsverstärker ab 1987 von Comlinear und Elantec angeboten.

Operationsverstärker wurden in ihren mechanischen und elektrischen Eigenschaften weiter verbessert und für viele Anwendungen in der analogen Schaltungstechnik optimiert, so kommen je nach Erfordernis verschiedene Transistortypen wie Bipolartransistoren, JFETs und MOSFETs zum Einsatz. Mit zunehmenden Stückzahlen sank auch der Preis der Bauteile. Herstellerübergreifende Typen, wie der Vierfach-Operationsverstärker LM324, sind für wenige Cent erhältlich.

Aufbau und VariantenBearbeiten

Es gibt unterschiedliche Typen von Operationsverstärkern, die sich z. B. durch ihre nieder- bzw. hochohmigen Ein- und Ausgänge voneinander unterscheiden. Fast immer ist der nicht invertierende (positive) Eingang als hochohmiger Spannungseingang ausgeführt. Der invertierende (negative) Eingang ist je nach Typ entweder ein hochohmiger Spannungseingang oder ein niederohmiger Stromeingang. Ebenso kann der Typ des Ausganges entweder als ein niederohmiger Spannungsausgang oder als ein hochohmiger Stromausgang ausgeführt sein. Dadurch ergeben sich in Summe vier verschiedene Schaltungskonfigurationen, wie in der folgenden Tabelle dargestellt.

      Spannungs-Ausgang Strom-Ausgang
Spannungs-Eingang Normaler Operationsverstärker
VV-OPV (engl. VFA)
 

Ua = AD UD

Transkonduktanz-Verstärker
VC-OPV (engl. OTA)
 

Ia = SD UD

Strom-Eingang Transimpedanz-Verstärker
CV-OPV (engl. CFA)
 

Ua = IN Z = AD UD

Strom-Verstärker
CC-OPV (engl. uneinheitl.)
 

Ia = kl IN = SD UD

Es sind weitere Konfigurationen möglich, aber nicht üblich. So kommt z. B. Schmid auf 9 unterschiedliche Varianten.[16] Solche Ausnahmen sollen hier nicht weiter behandelt werden, hier beschränken wir uns auf die vier praktisch bedeutsamen Varianten, von denen die Variante VV-OPV bei weitem dominiert.

Es gibt außerdem vollsymmetrische OPs, die mit zwei Ausgängen ausgestattet sind, zwischen denen die Ausgangsspannung differenziell ausgegeben wird. In diesem Fall ist oft ein dritter Eingang vorhanden, über den die Ruhelage der Ausgangsspannung gewählt wird.

Herkömmlicher Operationsverstärker (VV-OP)Bearbeiten

Beim herkömmlichen Operationsverstärker oder VV-OP (engl. voltage feedback OpAmp) sind beide Eingänge hochohmige Spannungseingänge und der Ausgang verhält sich wie eine möglichst niederohmige Spannungsquelle. In der Anfangszeit der Operationsverstärker gab es nur diesen Typ und auch heute noch ist diese Klasse die meistverbreitete. Auch in diesem Artikel wird meistens nur dieser Typ von Operationsverstärker referenziert. Die Vorteile sind seine geringe Offset-Spannung und hohe Präzision bei niedrigen Frequenzen. Nachteilig sind die Stabilitätsprobleme, vor allem bei kapazitiven Lasten im dynamischen Betrieb. Typische Vertreter dieser Klasse sind der Urahn µA741 oder der OP177 von Analog Devices.

 
Verein­fachte Innen­beschaltung eines Operations­verstärkers

Integrierte Operationsverstärker bestehen aus einer Vielzahl von unterschiedlichen Stufen und Schaltungsteilen, um verschiedene Anforderungen erfüllen zu können. Trotzdem lassen sich alle diese unterschiedlichen Varianten im Wesentlichen auf drei Schaltungsteile reduzieren, wie in nebenstehender Abbildung dargestellt:

  • Ein differentieller Eingang, im Schaltbild als gelber Bereich dargestellt. Dieser Teil besteht aus einem Differenzverstärker mit den beiden Eingängen, im oberen Bereich dargestellt, und einer Konstantstromquelle im unteren Bereich. Der Differenzverstärker wandelt eine kleine Spannungsdifferenz in einen dazu proportionalen Ausgangsstrom um. Bei einem herkömmlichen Operationsverstärker stellt diese Stufe auch den hohen Eingangswiderstand sicher. Die Eingangstransistoren können je nach Technologie Bipolartransistoren, MOSFETs oder JFETs sein. Die unterschiedlichen Transistortypen wirken sich unter anderem auf die Größe des Rauschens aus.
  • Eine Verstärkerstufe, orange hinterlegt, die den kleinen Eingangsstrom von der Eingangsstufe in eine hohe Ausgangsspannung umsetzt. Die hohe Geradeausverstärkung des Operationsverstärkers resultiert überwiegend aus dieser Stufe. Der in der Stufe zur internen frequenzabhängigen Gegenkopplung eingezeichnete Kondensator dient der Frequenzkompensation und gewährleistet damit die Stabilität des Operationsverstärkers mit einer externen Gegenkopplung. Manche OPs sind extern frequenzkompensiert, d. h., der Kondensator ist nicht auf dem Chip enthalten und kann stattdessen extern angeschlossen werden. Das Gehäuse hat dafür zusätzliche Anschlüsse.
  • Eine Ausgangsstufe, blau hinterlegt. Diese Stufe ist oft als Gegentaktstufe (engl. push-pull) realisiert und hat im Gegensatz zu den beiden vorherigen Stufen keine Spannungsverstärkung. Es gibt jedoch auch OPs mit verstärkenden Endstufen, die als Open-Kollektor bzw. Open-Drain-Endstufen ausgeführt sind und zusätzlich einen externen Pull-Up- oder Pull-Down-Widerstand benötigen. Die Endstufe dient gewöhnlich als Stromtreiber für den Ausgang, besitzt einen kleinen Ausgangswiderstand und ermöglicht so einen hohen Ausgangsstrom.

Das Kleinsignalverhalten dieser Schaltung beschreibt die Gleichung

 ,

wobei Ud die Eingangsspannungsdifferenz, Ua die Ausgangsspannung, A0 die Geradeausverstärkung bei kleinen Frequenzen und GBP das Verstärkungs-Bandbreiteprodukt symbolisieren. ωC bezeichnet die Kreisfrequenz.

Innenaufbau (Innenschaltung) des µA741Bearbeiten

 
Innen­schaltung des µA741-Operations­verstärkers

Um die Komplexität realer Operationsverstärker im Vergleich zu dem vereinfachten Modell darzustellen, ist nachfolgend die Innenschaltung des bekannten µA741 abgebildet. Dieser integrierte Schaltkreis (IC) wurde 1968 entwickelt und spiegelt den Stand der damaligen Technologie wider. Er wurde verbreitet von den Fachzeitschriften zur Einführung in die damals neue Technologie der Operationsverstärker und in Schaltungsvorschlägen genutzt. So wurde er zunächst fast ohne Alternative der bekannteste und am meisten eingesetzte Operationsverstärker. Heute wird er noch in geringen Stückzahlen vornehmlich für den Ersatzbedarf produziert.

Der links eingezeichnete blau umrandete Bereich stellt die Eingangsstufe (Differenzverstärker) mit Konstantstromquelle dar. Zum Abgleich von fertigungsbedingten Fehlern (Offset-Fehlern) sind in dieser Stufe zusätzliche Anschlüsse herausgeführt, woran ein Potentiometer zum Feinabgleich angeschlossen werden kann. Die drei rot umrandeten Bereiche stellen für die verschiedenen Stufen Stromspiegel dar. Stromspiegel sind stromgesteuerte Stromquellen und dienen in diesem Fall zur Versorgung der Verstärkerstufen.

Der magenta umrandete Bereich ist die primäre Spannungsverstärkerstufe, bestehend aus einer Darlington-Schaltung mit zwei Transistoren. Der grün umrandete Bereich erzeugt eine Vorspannung für die rechts außen türkis umrandete Ausgangsstufe. Der in der Mitte eingezeichnete Kondensator mit 30 pF dient der Frequenzkompensation. Die Fertigung dieses Kondensators direkt auf dem Siliziumchip stellte damals eine wesentliche Innovation in der Halbleiterfertigung dar.

Stromrückgekoppelter Operationsverstärker (CV-OP)Bearbeiten

 
Verein­fachte Innen­beschaltung eines CV-Operations­verstärkers

Bei dem stromrückgekoppelten Operationsverstärker, abgekürzt CV-OP (engl. current/voltage-OP) oder CFA (engl. current feedback amplifier) ist der invertierte Eingang ein niederohmiger Stromeingang und der Ausgang eine möglichst niederohmige Spannungsquelle. Ein Vorteil ist seine hohe Bandbreite, die den Einsatz etwa als Videoverstärker erlaubt. Ein Nachteil ist eine relativ hohe Offset-Spannung. Ein typischer Vertreter dieser Klasse ist der Baustein CLC449 von National Semiconductor.

Nebenstehende Abbildung zeigt die einfache Innenbeschaltung eines stromrückgekoppelten Operationsverstärkers. Im Gegensatz zu den in den vorherigen Kapiteln dargestellten herkömmlichen Operationsverstärkern mit Spannungseingängen ist der niederohmige Stromeingang in der gelb hinterlegten Eingangsstufe direkt an die Emitter der Eingangstransistoren angeschlossen. Die orange hinterlegte Verstärkerstufe in der Mitte besteht aus zwei Stromspiegeln, die die blau hinterlegte Gegentaktausgangsstufe ansteuern. Das Kleinsignalverhalten ergibt sich zu   , was zusammen mit dem Gegenkopplungsnetzwerk, betrachtet als Spannungsquelle   mit dem Ausgangswiderstand  , zu   führt: Die Vorwärtsverstärkung lässt sich durch die Impedanz des Gegenkopplungsnetzwerkes steuern, je niedriger die Impedanz ist, umso größer ist die Vorwärtsverstärkung.

Transkonduktanz-Operationsverstärker (VC-OP)Bearbeiten

Bei dem Transkonduktanz-Operationsverstärker oder VC-OP (engl. operational transconductance amplifier, abgek. OTA) sind beide Eingänge hochohmig und der Ausgang verhält sich wie eine möglichst hochohmige Stromquelle, deren Strom durch die Spannungsdifferenz an den Eingängen gesteuert wird. Einer seiner Vorteile ist – neben geringer Offset-Spannung – die Möglichkeit, kapazitive Lasten dynamisch treiben zu können. Der Nachteil besteht darin, dass die Last bei der Schaltungsdimensionierung bekannt sein muss. Ein Baustein aus dieser Klasse ist der LM13700 von National Semiconductor.

Stromverstärker (CC-OP)Bearbeiten

Der Stromverstärker oder CC-OP, auch unter der Markenbezeichnung englisch diamond transistor bekannt, besitzt einen niederohmigen und invertierten Stromeingang und einen möglichst hochohmigen Stromausgang. Dieser Typ von Operationsverstärker verhält sich in Näherung fast wie ein idealer Bipolartransistor, mit Ausnahme der Stromrichtung am Kollektor. Die Basis fungiert als hochimpedanter nichtinvertierender Eingang, der Emitter als der niederimpedante invertierende Eingang, und der Kollektor als hochimpedanter Ausgang. Im Gegensatz zu einem realen Bipolartransistor können die Ströme in beide Richtungen fließen, d. h. es ist keine Unterscheidung zwischen NPN und PNP nötig, ein Bauteil deckt beide Polaritäten ab.

Im Gegensatz zu realen Bipolartransistoren benötigt der CC-OP aber eine Stromversorgung, ist also wie andere Operationsverstärker kein 3-poliges Bauelement. Die Ströme an Emitter und Kollektor sind gleichsinnig, das heißt, sie gehen beide ins Bauteil hinein, oder beide heraus. Die Summe beider Ströme fließt über die Betriebsspannungsanschlüsse, zusätzlich zum Ruhestrom. Es handelt sich damit in der Klassifizierung von Sedra/Smith um einen CCII+ (Current Conveyor, second Generation, positive Polarity). Der reale Bipolartransistor wäre dagegen eine Implementierung des CCII-.[17]

Ein Vertreter dieser Klasse ist der OPA860 von Texas Instruments. Dieser enthält außerdem einen Impedanzwandler (Spannungsfolger), mit dessen Hilfe man den Ausgang zum niederimpedanten Spannungsausgang machen kann, wodurch man einen CFA erhält. Der Impedanzwandler kann aber auch vor den „Emitter“ geschaltet werden, wodurch dieser hochimpedant wird. Das ergibt einen OTA. Mit einem Bauteil sind so drei unterschiedliche Konfigurationen realisierbar. Aus diesem Grund wird das Bauteil auch als OTA vermarktet, es kann jedoch genauso in den anderen Konfigurationen betrieben werden. Die Verwandtschaft zum CFA sieht man am gezeigten Prinzipschaltbild des CFA: Der blau hinterlegte Teil ist ein Impedanzwandler. Wird er entfernt, bekommt man einen CC-OP. Im OPA860 ist der Impedanzwandler vorhanden, aber seine Anschlüsse sind separat nach außen geführt, so dass seine Benutzung dem Anwender freisteht.

FunktionBearbeiten

OPs sind für den Einsatz mit einem externen Rückkopplungsnetzwerk ausgelegt, welches die Funktion definiert. In aller Regel dominiert dabei die Gegenkopplung, da sonst aufgrund der Größe des Verstärkungsfaktors des OPs nur die höchste oder niederste mögliche Ausgangsspannung am Ausgang anliegt, und damit der „lineare“ Bereich verlassen wäre, in dem die goldenen Regeln gelten. Die meisten Anwendungen des OP halten ihn durch Gegenkopplung in diesem linearen Bereich. Dabei steuert der OP den Ausgang auf die Spannung, die bewirkt, dass der negative Eingang potentialgleich mit dem positiven Eingang wird, die differentielle Eingangsspannung also 0 wird.

Es gibt allerdings auch einige Anwendungen, die den linearen Bereich bewusst verlassen. Der Ausgang nimmt dann entweder seine minimale oder seine maximale Spannung an, er kennt also nur noch zwei Zustände. Diese „digitale“ Betriebsart (Komparator) ergibt sich bei Verzicht auf Gegenkopplung aufgrund der großen Verstärkung. Im Fall von Mitkopplung kommt es zu einer Hysterese wie beim Schmitt-Trigger. Die Eignung eines OP für diese Betriebsart muss geprüft werden, denn die damit einhergehende Eingangsspannungsdifferenz liegt bei manchen OPs außerhalb des Erlaubten.

Die für den linearen Betrieb nötige Gegenkopplung reduziert die Gesamtverstärkung der Schaltung, bestehend aus Operationsverstärker und Rückkopplungsnetzwerk, und legt ein genaues (praktisch nur von der Genauigkeit der Bauteile der Rückkopplung abhängiges) Betriebsverhalten der gesamten Schaltung fest (siehe Gegenkopplung für eine Aufstellung der damit verbundenen Vorteile).

Durch die Beschaltung des Operationsverstärkers lassen sich ganz unterschiedliche Funktionen realisieren. Mit wenigen Widerständen können Schaltungen aufgebaut werden, die Spannungen als analoge Größe addieren, subtrahieren oder mit einem festen Faktor multiplizieren. Komplexere Funktionen sind mit Kondensatoren möglich. So können analoge Filter realisiert werden oder die eng verwandten mathematischen Funktionen wie Integration und Differentiation.

 
Schaltzeichen des Operationsver­stärkers mit seinen wichtigsten Größen und drei Parametern:  , typ. 105;
 , typ. > 1 MΩ;  , typ. < 100 Ω

Die grundlegende Formel für das Bauelement Operationsverstärker lautet[18][19]

 

mit   = Leerlauf-Spannungsverstärkung. Fast immer bestens zulässige Näherungen führen zum „idealen Operationsverstärker“:

 

Anwendung ohne Rückkopplung als Komparator

Ohne Rückwirkung des Ausgangs auf die Eingänge kann   kann nur zwei Werte annehmen:
  • positiv übersteuert, wenn  
  • negativ übersteuert, wenn  .
(Der mathematisch exakte singuläre Punkt   ist physikalisch nicht realisierbar.)
 
Strom-Spannungs-Umformer

Anwendung mit Rückkopplung auf den invertierenden Eingang

Die Schaltung kann ohne Übersteuerung analogtechnisch betrieben werden. Dazu muss sich wegen   bei nicht übersteuertem Ausgang   einstellen.

Beispiel: In der einfachen nebenstehenden Schaltung wirkt der Ausgang mit einem ohmschen Widerstand zurück auf den mit „−“ gekennzeichneten Eingang. Wegen   fließt der gesamte Eingangsstrom   durch den Widerstand. Ein positiver Eingangsstrom zieht den Eingang ins Positive, damit wird   und erst recht  . Dem Einfluss der Eingangsseite wirkt   über den Widerstand entgegen. Vom Verstärkerausgang wird der Strom   mit einem so großen negativen   aufgenommen, dass   wird, was bei   erreicht wird.

Hinweis:   gilt nicht in mathematischer Strenge. Die Spannung   ist bedeutungslos klein, muss aber doch so groß sein, dass sie ein Vorzeichen haben kann.

Beispiele für realisierbare OperationenBearbeiten

Der Operationsverstärker besitzt eine große Bandbreite an möglichen Anwendungen, beispielsweise in verschiedenen Verstärkerstufen wie Vorverstärker und Messumformer, ferner in Analogfiltern, Analog-Digital-Umsetzern und in Stufen zur analogen Signalverarbeitung.

Bei den im Nachfolgenden genannten einfachen Schaltungen, welche die Grundlage vieler Anwendungen des Operationsverstärkers bilden, wird aus Gründen der Übersichtlichkeit immer von einem idealen, spannungsgesteuerten Operationsverstärker ausgegangen. Die realisierte Operation wird dabei lediglich durch die externe Beschaltung bestimmt. Die zwei Eingänge geben eine Wahlmöglichkeit, auf welchen der Eingänge die Eingangsgröße einwirken soll. Bei der Rückkopplung, damit sie zur stabilisierenden Gegenkopplung wird, gibt es die Wahlmöglichkeit nicht.

In diesen Beispielen werden zur Speisung zwei Spannungsquellen vorausgesetzt, eine mit positiver und eine mit negativer Spannung gegenüber Bezugspotential Masse, damit der Operationsverstärker positive und negative Ausgangsspannungen und -ströme erzeugen kann.

Einwirkung auf den nichtinvertierenden EingangBearbeiten

SpannungsfolgerBearbeiten

 
Schaltbild eines Spannungs­folgers

Die als Spannungsfolger bezeichnete Schaltung ist eine Variante des nichtinvertierenden (linearen) Verstärkers. Der invertierende Eingang ist direkt mit dem Ausgang verbunden. Die Gegenkopplung bewirkt, dass die Spannungsdifferenz zwischen den beiden Eingängen null wird. Das ergibt den Zusammenhang

 

und einen Verstärkungsfaktor  . Die Spannung am Ausgang folgt unverändert der Spannung am Eingang, wovon sich der Name Spannungsfolger ableitet.

Der Eingangswiderstand   der Schaltung ergibt sich näherungsweise aus dem Eingangswiderstand des Operationsverstärkers  , der Leerlaufspannungsverstärkung   des Operationsverstärkers und der Verstärkung   der Schaltung zu[20][21]

  .

Der Spannungsfolger hat unter allen nichtinvertierenden Verstärkern die kleinstmögliche Verstärkung und den größtmöglichen Eingangswiderstand. Umgekehrt gilt für den Ausgangswiderstand   der Schaltung näherungsweise

  ,

so dass er kleinstmöglich ist. Damit eignet sich der Spannungsfolger in besonderem Maße als Impedanzwandler, der eine Spannungsquelle fast nicht belastet, aber selber belastet werden kann.

Nichtinvertierender Verstärker (Elektrometerverstärker)Bearbeiten

 
Schaltbild eines nicht­inver­tierenden Verstärkers

Gegenüber dem Spannungsfolger wird bei diesem Verstärker ein Spannungsteiler aus zwei Widerständen in die Gegenkopplung geschaltet. Nur der an   abfallende Teil der Ausgangsspannung wird auf den invertierenden Eingang zurückgeführt. Die Differenzspannung zwischen seinen Eingängen wird auf null gehalten, wozu sich die Ausgangspannung stets größer einstellt als die Eingangspannung. Da der Spannungsteiler durch keinen abzweigenden Strom belastet wird, ergibt sich der Verstärkungsfaktor   unmittelbar aus dem Verhältnis Gesamtwiderstand zu Teilwiderstand:

 

Dies führt zu der Ausgangsspannung  :

 

Eingangsseitig „misst“ der Verstärker die Eingangsspannung, ohne dass der Verstärker in der Funktion eines Spannungsmessgerätes die Spannungsquelle mit einem Strom belastet,– wie ein Elektrometer. Ausgangsseitig verhält sich der Verstärker wie eine ideale Spannungsquelle. Die Funktionsgleichung gilt bei einer angeschlossenen Belastung unabhängig vom dazu erforderlichen Ausgangsstrom, – bis zur Grenze der Lieferfähigkeit des Operationsverstärkers.

Die kleinste Verstärkung, die mit dieser Schaltung möglich ist, ist  . Sie entsteht, wenn   oder   ist, wodurch die Schaltung zum Spannungsfolger wird. Anderes ergibt sich für die kleinste Verstärkung beim invertierenden Verstärker.

Spannungs-Strom-UmformerBearbeiten

 
Schaltbild eines Spannungs-Strom-Umformers

Derartige Schaltungen finden sich beispielsweise in der industriellen Messtechnik, da sich Stromsignale meistens leichter fehlerarm übertragen lassen als Spannungssignale (z. B. Einheitssignal 4 bis 20 mA). Der Messwiderstand   wirkt als Proportionalitätsfaktor und sollte eng toleriert sein. In der nebenstehenden Schaltung stellt sich der Strom durch den Lastwiderstand   so ein, dass an   die Spannung   entsteht:

  ,

wobei dieser Strom unabhängig von   ist. Die Größe von   ist nach oben dadurch begrenzt, dass der Operationsverstärker in seiner Ausgangsspannung begrenzt ist. Diese Schaltung hat den Nachteil, dass der Lastwiderstand potentialfrei gegen Masse sein muss. Weitere Schaltungsvarianten, mit denen dieser Nachteil umgangen werden kann, werden bei der Konstantstromquelle beschrieben.

Einwirkung auf den invertierenden EingangBearbeiten

Invertierender VerstärkerBearbeiten

 
Schaltbild eines inver­tierenden Verstärkers

Der Operationsverstärker steuert infolge der Gegenkopplung seinen Ausgang so aus, dass die Differenzspannung zwischen seinen Eingängen auf null gehalten wird. In der angegebenen Schaltung mit dem auf Masse gelegten nichtinvertierenden Eingang kann deshalb angenommen werden, dass sich am invertierenden Eingang (−) ebenfalls Massepotential einstellt, aber ohne durch Verdrahtung mit Masse verbunden zu sein. Dieser Knotenpunkt wird in der Fachsprache auch als virtuelle Masse bezeichnet. Der Widerstand   liegt dann zwischen Eingangsklemme und Masse, und   liegt zwischen Ausgangsklemme und Masse. Da weiterhin angenommen werden kann, dass kein Strom in den invertierenden Eingang fließt, muss der gesamte Strom  , der sich in   einstellt, auch in   fließen; am Ausgang muss eine Spannung   auftreten, die so groß ist wie der Spannungsabfall, der mit diesem Strom an   entsteht:

 
 

Der Verstärkungsfaktor   ist negativ. Dieses bedeutet bei Gleichspannung einen Vorzeichenwechsel zwischen Eingangs- und Ausgangsspannung, bei sinusförmiger Wechselspannung eine Phasenverschiebung um 180°. Der Eingangswiderstand, mit dem   belastet wird, wird nicht von einer Eigenschaft des Operationsverstärkers abgeleitet, sondern von der Auslegung der Schaltung: Er ist identisch mit  .

Sind   und   gleich, bildet sich die Eingangsspannung am Ausgang mit umgekehrtem Vorzeichen ab.

Beim invertierenden Verstärker ist auch eine Verstärkung mit   ohne weitere Bauteile möglich, was eine Abschwächung zulässt.

Invertierender Addierer/SummierverstärkerBearbeiten

 
Schaltbild eines Addierers

Die Schaltung ist eng mit dem invertierenden Verstärker verwandt, dieser ist jedoch um mindestens einen Eingang erweitert.

Die Bezeichnung Addierer hat sich eingebürgert, obwohl das Vorzeichen der Summe durch die Schaltung geändert wird. Die Eingangsspannungen   werden aufsummiert und verstärkt. Physikalisch streng sind es Ströme, die addiert werden und in ihrer Summe durch   weiterfließen. Durch das virtuelle Massepotential beeinflusst kein Strom durch einen Eingang den Strom durch einen anderen Eingang. An jedem Eingang gibt es einen Eingangswiderstand, durch den sich die einzelnen zu addierenden Spannungen unterschiedlich gewichten lassen. Diese Schaltung kann mit einer beliebigen Anzahl von Eingängen (Summanden) genutzt werden.

Die Gleichung für die Ausgangsspannung   ergibt sich für die dargestellte Schaltung mit drei Eingängen zu:

 

Die Eingangsspannungen können positiv oder negativ sein. Sollen zwei Spannungen subtrahiert werden, kann die abzuziehende Spannung über einen Verstärker mit   invertiert und dann addiert werden. Ohne diesen Umweg gibt es Subtrahierer mit Einwirkung auf beide Eingänge des Operationsverstärkers oder als Schaltung mit mehreren Operationsverstärkern.

Strom-Spannungs-UmformerBearbeiten

 
Schaltbild eines Strom-Spannungs-Umformers

Der Strom-Spannungs-Umformer formt einen Eingangsstrom   in eine proportionale Spannung   um. Da keine Spannung zwischen den virtuell und real an Masse liegenden Eingängen auftritt, fällt in dieser Schaltung im Eingangsstromkreis keine Spannung ab. Für den geschlossenen Stromkreis muss der zweite Pol der Stromquelle mit Masse verbunden sein.

Mit dem Widerstand   als Proportionalitätsfaktor lässt sich das Verhältnis von Eingangsstrom zu Ausgangsspannung einstellen:

 

Hier liegt am Ausgang die Spannung an, die benötigt wird, um den Eingangsstrom   durch den Widerstand   fließen zu lassen. Die Schaltung kann zur Verarbeitung von Signalen aus Stromquellen verwendet werden. Sie wird auch als Transimpedanzverstärker bezeichnet.

Strom-Strom-UmformerBearbeiten

 
Schaltbild eines Strom-Strom-Umformers

Der Strom-Strom-Umformer bildet einen Eingangsstrom ab auf einen dazu proportionalen Ausgangsstrom. Er kann auch als Stromverstärker bezeichnet werden. Die Widerstände   und   bilden einen Stromteiler. Nur der durch   fließende Teil des Ausgangsstromes wird auf den invertierenden Eingang zurückgeführt. Die Gleichung

 

gilt unabhängig vom angeschlossenen Lastwiderstand  . Eingangsseitig „misst“ der Umformer den Eingangsstrom, ohne dass der Umformer in der Funktion eines Strommessgerätes die Stromquelle mit einem Spannungsabfall belastet. Ausgangsseitig verhält sich der Umformer wie eine ideale Stromquelle. Die Funktionsgleichung gilt bei einer angeschlossenen Belastung unabhängig von der dazu erforderlichen Ausgangsspannung, – bis zur Grenze der Aussteuerbarkeit des Operationsverstärkers.

Im Sonderfall, wenn   oder   ist, wird dieser Umformer schaltungstheoretisch das Gegenstück zum Spannungsfolger, sozusagen ein Stromfolger, allerdings invertierend,:

  .

IntegriererBearbeiten

 
Schaltbild eines Integrierers
 
Spannungen am Integrierer

Ein Integrierer ist eine Schaltung mit einem Kondensator als Gegenkopplung. Mit diesem Bauteil kommt eine Abhängigkeit von der Zeit in die Zusammenhänge. Der Kondensator ist ein analoger Speicher, der durch den Eingangsstrom aufgeladen wird. Dieser Strom entsteht aufgrund der über   abfallenden Eingangsspannung   und erzeugt einen Anstieg der Spannung am Kondensator mit einer durch den Strom festgelegten Anstiegsgeschwindigkeit.

 
 

Wenn für         und

wenn für      ,   dann ist

 

Das ergibt bei konstantem positivem   eine Gerade mit negativem Anstieg. Ohne Gegenmaßnahme läuft ein eingangsseitig mit Gleichspannung betriebener Integrierer bis an die Grenze seines Aussteuerbereiches.

Integrierer sorgen für ein ausgleichendes Verhalten. Ferner können sie Funktionsgeneratoren bilden, um beispielsweise aus Rechtecksignalen Dreieckschwingungen zu erzeugen.

Das nebenstehende Bild zeigt den zeitlichen Verlauf von Ein- und Ausgangsspannung ideal frei von einem Einfluss durch einen Gleichanteil auf der Eingangsseite. Der Spitze-Tal-Wert der Ausgangsspannung   ist proportional zur Periodendauer   oder umgekehrt proportional zur Kreisfrequenz  :

 

Je größer die Frequenz wird, desto kleiner wird  . Entsprechend wird bei Sinusspannung mit steigender Frequenz die Amplitude abgeschwächt.

MittelwertbilderBearbeiten

 
Schaltbild eines aktiven Tiefpasses 1. Ordnung
 
Spannungen am Mittel­wert­bilder bei zwei verschiedenen Frequenzen

In der nebenstehenden, auch als Tiefpass bezeichneten Schaltung übernimmt bei tiefen Frequenzen, wenn   ist, der Widerstand   die Rückkopplung; die Schaltung hat das Verhalten eines Verstärkers. Im umgekehrten Fall, wenn   ist, übernimmt der Kondensator die Rückkopplung und erzeugt das Verhalten eines Integrierers. Das bedeutet: Die Eingangsspannung wird verstärkt; aber für darin enthaltene Wechselanteile oberhalb einer durch   und   gegebenen Frequenz übernimmt der Blindwiderstand des Kondensators anstelle von   die Rückkopplung, wodurch mit zunehmender Frequenz diese Anteile abgeschwächt werden. Zusammengefasst ergibt das die Funktionsgleichung

 

Dieser aktive Tiefpass belastet die Signalquelle rein ohmsch mit dem Eingangswiderstand  , also unabhängig von der Frequenz.

Bei einer Rechteckspannung, deren Grundfrequenz im Vergleich zur Grenzfrequenz des Tiefpasses niedrig ist, werden nur die höherfrequenten Anteile abgeschwächt, welche die Flanken ausformen, was sich im Bild beim oberen Verlauf der Ausgangsspannung durch verrundete Flanken zeigt.

Bei wesentlich höherer Grundfrequenz werden alle Wechselanteile nahezu unterdrückt, und nur der Gleichanteil bestimmt die Ausgangsspannung. Diesen Fall zeigt der untere Bildteil, in dem nur noch ein geringer Einfluss der Wechselspannung sichtbar ist.

DifferenziererBearbeiten

 
Schaltbild eines Differenzierers

Beim Differenzierer befindet sich ein Kondensator zwischen der Eingangsklemme und der virtuellen Masse am invertierenden Eingang des Verstärkers. Da der eine Pol des Kondensators fest auf Massepotential gehalten wird, fällt die gesamte Eingangspannung am Kondensator ab. In ihm fließt ein Umladestrom proportional zur Geschwindigkeit, mit der sich die Eingangsspannung ändert. Die Ausgangsspannung wird so groß wie der Spannungsabfall am Widerstand   infolge des Stromes.

 
 

mit der Zeitkonstanten  . Bei Gleichspannung ist  .

Der Differenzierer kann auch als Hochpass erster Ordnung aufgefasst werden: Der Kondensator am Eingang sperrt die Gleichspannung; je höher bei Wechselspannung die Frequenz ist, desto kleiner ist der Blindwiderstand des Kondensators. Wird er als Eingangswiderstand eines invertierenden Verstärkers betrachtet, nimmt die Verstärkung zu, je größer die Frequenz oder je kleiner der Blindwiderstand wird (mit 6 dB pro Oktave oder 20 dB pro Dekade).

Die Schaltung neigt zum Überschwingen bei höherfrequenten Anteilen des Eingangssignals. Damit sie sich stabil verhält, wird zum Kondensator oft ein Widerstand in Reihe geschaltet. Dieser begrenzt die mit steigender Frequenz verbundene Erhöhung der Verstärkung auf den Wert wie bei ohmscher Beschaltung. Damit wird auch vermieden, dass bei Spannungssprüngen ein zu hohes oder verzerrtes Ausgangssignal entsteht.

In der Regelungstechnik werden differenzierende Glieder eingesetzt, um auf schnelle Regelabweichungen kurzzeitig überproportional reagieren zu können.

Logarithmierer und PotenziererBearbeiten

 
Prinzipieller Aufbau eines Logarithmierers

Das Logarithmieren und die Umkehrfunktion, das Potenzieren, sind nichtlineare Funktionen, die sich mit der Kennlinie einer Diode nachbilden lassen. Für diese gilt in Durchlassrichtung näherungsweise

 

Darin sind  ,   und   Konstanten, die allerdings von der Temperatur abhängen. In der nebenstehenden Schaltung des Logarithmierers fließt bei positiver Eingangsspannung zwar ein Strom proportional zu  , aber die negative Ausgangsspannung wächst mit dem Strom nur logarithmisch:

 
 
Prinzipieller Aufbau eines Potenzierers

In der nächsten Schaltung wächst bei positivem   der Strom exponentiell mit der Spannung an der Diode an, und am Widerstand wächst entsprechend auch die Ausgangsspannung an.

 

Praktisch realisierte Logarithmierer und Potenzierer sind im Aufbau aufwändiger und verwenden statt der Diode meistens Bipolartransistoren, wodurch sich unerwünschte Einflüsse verkleinern lassen. Sie besitzen eine Temperaturkompensation. Das zugrunde liegende Funktionsprinzip wird dadurch aber nicht verändert.[22]

Nach dem Logarithmieren können Multiplikationen und Divisionen mittels Addition und Subtraktion ausgeführt werden. Damit können zwei Logarithmierer, gefolgt von einem Addierer oder Subtrahierer und einem anschließenden Potenzierer als Analogmultiplizierer oder Dividierer eingesetzt werden.

Anwendungen sind beispielsweise Modulatoren, Messgeräte, die ohne Umschaltung über mehrere Größenordnungen arbeiten,[22] Verhältnispyrometer, Effektivwertmesser.

Einwirkung auf beide EingängeBearbeiten

Differenzverstärker / SubtrahierverstärkerBearbeiten

 
Schaltbild eines Differenz­verstärkers

Bei einem Differenzverstärker oder Subtrahierer mit einem Operationsverstärker wird er so beschaltet, dass er gleichzeitig wie ein invertierender und ein nichtinvertierender Verstärker arbeitet. Dabei wirkt   über einen Spannungsteiler auf den nichtinvertierenden Eingang des Operationsverstärkers;   wirkt auf den invertierenden Eingang, der aber nicht virtuell auf Masse liegt. Die Ausgangsspannung stellt sich ein gemäß der Gleichung

 .

Besitzen die entsprechenden Widerstände in der Schaltung dieselben Werte ( ,  ), ist die Ausgangsspannung die Differenz der Eingangsspannungen, multipliziert mit dem Verhältnis   zu  :

 

Für   wird der Faktor vor der Klammer gleich eins:

  .

Allerdings sind die Zusammenhänge nicht so einfach, wie es die Gleichung darstellt. Sind Widerstandsverhältnisse nominell gleich, so werden sie in der Rechnung zusammengefasst und nach Möglichkeit gekürzt. Durch Exemplarstreuungen der Widerstände weichen die bestehenden Widerstandsverhältnisse voneinander ab, und sie lassen das Übertragungsverhalten vom Idealverhalten ebenfalls abweichen, obwohl sie in der Gleichung nicht auftreten.

Eine Anwendung einer solchen Schaltung ist die Umsetzung von symmetrischen Signalen auf ein massebezogenes Signal. Dabei werden Störungen, die auf beide Signale gleichermaßen wirken (Gleichtaktstörungen), beseitigt. Voraussetzung dafür ist, dass die Verhältnisse der Widerstände möglichst exakt sind und dass der Innenwiderstand der Signalquelle vernachlässigbar klein ist. Die Eingangswiderstände beider Signaleingänge sind für Gleichtaktsignale gleich, wodurch eine optimale Gleichtaktunterdrückung erreicht wird. Für voneinander abweichende Eingangssignale sind die Eingangswiderstände jedoch unterschiedlich: Für den nichtinvertierenden Eingang ist sein Widerstand  , für den invertierenden Eingang ist er abhängig von  .[23] Der weiter unten beschriebene Instrumentenverstärker vermeidet diese mögliche Fehlerquelle.

Schaltung mit mehreren OperationsverstärkernBearbeiten

Subtrahierer mit hohem EingangswiderstandBearbeiten

 
Schaltlbild eines Subtrahierers

Für die gezeigte Schaltung gilt

 

Mit   und   vereinfacht sich die Gleichung zu

 

Werden alle Widerstände gleich groß gemacht, erzeugt die Schaltung

 

Ein Faktor Eins vor der Klammer wäre mit   denkbar, ist aber mit dieser Schaltung nicht möglich.

Das zuvor angegebene Problem mit Widerstandsverhältnissen, die in der Schlussgleichung nicht sichtbar, aber in der Schaltung doch wirksam sind, gilt auch hier.

InstrumentenverstärkerBearbeiten

 
Schaltbild eines Instrumenten­verstärkers

Der weiter oben beschriebene Differenzverstärker kann mit zwei weiteren Operationsverstärkern zu einem Instrumentenverstärker erweitert werden. Der Instrumentenverstärker wird auch als Messverstärker, Instrumentierungsverstärker oder Elektrometersubtrahierer bezeichnet und findet vor allem bei der Verstärkung von Messsignalen Anwendung. Er ist als integrierter Schaltkreis erhältlich, in dem das zuvor genannte Problem mit nicht exakten Widerstandsverhältnissen durch Abgleich im Herstellprozess vermindert werden kann.

Der Instrumentenverstärker besitzt im Unterschied zum Differenzverstärker zwei gleichartige hochohmige Eingänge sowie eine höhere Gleichtaktunterdrückung.

 

Die Verstärkung kann über einen einzigen Widerstand   eingestellt werden, weshalb bei integrierten Instrumentenverstärkern die Anschlüsse dieses Widerstandes herausgeführt sind für individuelle Belegung. Bei fehlendem   (offene Klemmen) beträgt die Verstärkung eins.

GleichrichterBearbeiten

 
Präzisions-Vollweggleichrichter aus Einweggleichrichter und Addierer

Siliziumdioden haben einerseits einen sehr kleinen Sperrstrom, andererseits eine beträchtliche Durchlassspannung, die sehr verfälschend wirken kann. Bei den Präzisionsgleichrichtern und Spitzenwertgleichrichtern übernimmt die Diode (im Bild: D2) zwar die Gleichrichtung, aber ihre Durchlassspannung geht in das Ausgangssignal der Gleichrichterschaltung nicht ein, indem   statt   als Ausgangsspannung genommen wird. Für die nebenstehende Schaltung gilt mit   die Übertragungsfunktion

 .

Weitere AnwendungenBearbeiten

Über die Anwendung als aktive Filter erster Ordnung hinaus lassen sich mit Operationsverstärkern auch Filter höherer Ordnung aufbauen. Das Sallen-Key-Filter ist ein Beispiel für ein besonders einfaches Filter 2. Ordnung mit nur einem Operationsverstärker; damit lassen sich unterschiedliche Filtercharakteristiken wie Butterworth- oder Tschebyscheff-Filter und Funktionen wie Tiefpass, Hochpass und Bandpass realisieren. Auch andere Filter wie Allpassfilter können mit Operationsverstärkern aufgebaut werden. Höhere Filterordnungen werden durch Serienschaltung mehrerer aktiver Filter erzielt.

 
Als induktive Last wirkende Schaltung mit einem Kondensator

Spulen lassen sich auf Leiterplatten schwer unterbringen. Induktivitäten lassen sich aber mittels Operationsverstärker und Kondensator simulieren. Für die gezeigte Schaltung[24] gilt in der Schreibweise mit komplexen Größen

 
 

Dadurch erscheint die Schaltung zwischen den Klemmen wie eine induktive Impedanz

 

Allgemein lassen sich mit Operationsverstärkern Impedanzkonverter aufbauen, die beispielsweise Gyratoren zur Simulation von großen Induktivitäten ohne die Nachteile von Spulen realisieren können, sowie Zirkulatoren zur Auftrennung von Signalrichtungen oder auch Negativimpedanzkonverter, die sich wie „negative Widerstände“ verhalten.[25]

Es gibt auch Ausführungen mit integrierten Leistungsendstufen, so dass mit dem Ausgangssignal beispielsweise direkt Stellglieder in Steuerungen oder Lautsprecher angesteuert werden können.

Berechnung von Operationsverstärker-SchaltungenBearbeiten

 
Ersatz­schalt­bild eines idealen Operations­verstärkers

Zur Berechnung von Operationsverstärkerschaltungen ist es von Nutzen, ein Ersatzschaltbild für den Operationsverstärker heranzuziehen, welches das Bauteil mit verschiedenen, leichter zu handhabenden Bauteilen modelliert.

Da ein idealer Operationsverstärker von der Funktion her eine gesteuerte Spannungsquelle ist, kann er am Ausgang durch eine gesteuerte Spannungsquelle mit den beiden Differenzeingängen als Steuerspannung ersetzt werden. Damit ist es möglich, die gesamte Schaltung mit Hilfe des Knoten-, Maschen- und Überlagerungssatzes zu berechnen. Die Steuerspannung   wird für ideale Operationsverstärker wegen der unendlichen Geradeausverstärkung   auf Null gesetzt. Bei nichtidealen Operationsverstärkern gilt   mit endlicher Geradeausverstärkung  .

Beispiel mit einem invertierenden VerstärkerBearbeiten

 
Ersatz­schalt­bild eines inver­tierenden Verstärkers
 
Ersatz­schalt­bild eines Operations­verstärkers mit Leckströmen und Offset-Spannungen

Der Überlagerungssatz ergibt für die Differenzspannung:

 

Für den idealen Operationsverstärker mit   folgt dann:

 
 

Für die Eigenschaften eines realen Operationsverstärkers können nun weitere Quellen oder Widerstände eingefügt werden, um das Schaltungsmodell besser den realen Gegebenheiten anzupassen. So ist es für empfindliche Verstärker, wie beispielsweise Mikrofonvorverstärker, oft notwendig, die Leckströme der Eingänge sowie die Offset-Spannung mit zu berücksichtigen. Die Leckströme IB werden dabei mit Stromquellen angenähert, die Offset-Spannung UOs als Spannungsquelle in Serie zu den beiden Eingängen, wie in nachfolgender Abbildung, dargestellt.

Eigenschaften realer OperationsverstärkerBearbeiten

Der reale Operationsverstärker versucht sich dem Modell des idealen Operationsverstärkers anzunähern. Durch physikalische Grenzen, wie eine maximale Versorgungsspannung, aber auch Fertigungstoleranzen durch Unreinheiten im Halbleitermaterial, durch Produktionsschwankungen und ähnliches mehr ergeben sich jedoch Abweichungen vom idealen Verhalten. Die entsprechenden Einschränkungen werden in den Datenblättern genannt, sie stellen wichtige Informationen für korrekte und erfolgreiche Anwendung des Bauteils in einer Schaltung dar. Schaltungs-Simulationsprogramme wie SPICE modellieren diese Einschränkungen in unterschiedlich detailliertem Ausmaß.

Je nach Anforderungen in einer konkreten Schaltung variiert die Bedeutung dieser Einschränkungen. Dabei stehen die Anforderungen teilweise in Konflikt miteinander. So ist typischerweise die Stromaufnahme rauscharmer Typen umso größer, je weniger sie rauschen. Auch hohe Grenzfrequenz wird meist mit hohem Strombedarf erkauft. Das eröffnet Raum für eine große Typenvielfalt, aus der ein Anwender den am besten passenden Typ auswählen kann.

Zu den wichtigsten Parametern gehören die in den folgenden Unterabschnitten aufgeführten Parameter.

Spannungsversorgung und StromaufnahmeBearbeiten

Der ideale Operationsverstärker braucht keinen Strom und kann beliebig große Ausgangsspannungen erzeugen. In der Realität ist das nicht möglich; für die Spannungsversorgung des Bauteils gelten Einschränkungen. Die Versorgungsspannung, bei der ein Operationsverstärker funktioniert und nicht beschädigt wird, hängt von der Herstellungstechnologie und der Schaltungsauslegung ab. Die Stromaufnahme des Operationsverstärkers setzt sich aus dem so genannten Ruhestrom (engl. quiescent current) und der Stromentnahme über den Ausgang zusammen. Der Ruhestrom dient zum Betrieb der internen Schaltungen des Operationsverstärkers und ist näherungsweise konstant.

Frühe röhrenbasierte OPs arbeiteten mit einer symmetrischen Betriebsspannung von ±300 V. Frühe integrierte OPs wie z. B. der erwähnte µA741 waren für eine Betriebsspannung von ±15 V konstruiert; eine bis heute weit verbreitete Spannungsversorgung für OPs. Zunehmende Bedeutung haben OPs für niedrige Betriebsspannungen von 5 V und darunter, einem generellen Trend hin zu niedrigeren Betriebsspannungen folgend.

Generell können OPs nur Ausgangsspannungen erzeugen, die innerhalb des durch die Betriebsspannungen aufgespannten Bereiches liegen. Wie nahe man den Betriebsspannungen in der Praxis kommt, hängt von der konkreten internen Ausführung des Bauteils ab. Sogenannte „Rail-to-Rail“ Ausgänge erlauben es, den Betriebsspannungen (Rails) recht nahe zu kommen, je nach Ausgangsstrom evtl. sogar näher als 100 mV. Andere Konstruktionen brauchen u. U. 2 V Abstand zu den Betriebsspannungen, oder sogar mehr. Sog. “single-supply”-OPs erlauben üblicherweise eine Annäherung an die negative Versorgung auf Werte unter 1 V, aber nicht eine entsprechende Annäherung an die positive Versorgung.

Wenn die Ausgangsspannung den vom OP und seiner Spannungsversorgung unterstützten Bereich zu verlassen versucht, weil das von der Rückkopplung „verlangt“ wird, dann bricht die Verstärkung ein, und der lineare Betriebsbereich wird verlassen. Die oben erwähnten „goldenen Regeln“ gelten dann nicht mehr.

Der Ruhestrom des OP kann sich zwischen unterschiedlichen Modellen sehr stark unterscheiden. Micropower-OPs mit Ruheströmen unterhalb von 1 µA sind im Handel. OPs für hohe Leistungen oder hohe Frequenzen benötigen auf der anderen Seite evtl. Ruheströme von über 100 mA.

Frühe Operationsverstärker hatten neben den beiden Betriebsspannungs-Anschlüssen noch einen Masseanschluss (z. B. der K2-W und der µA702). Das ist inzwischen unüblich, denn die Betriebsspannungsanschlüsse können die Funktion des Masseanschlusses mit erfüllen. Zwischen den Betriebsspannungsanschlüssen und der Masse bestehen lediglich Gleichspannungs-Unterschiede, für Wechselspannung sind sie alle gleichwertig. Damit ist es für einen OP gleichgültig, ob die Masse in der Mitte der Betriebsspannung liegt (symmetrische Versorgung), ob sie mit einem Betriebsspannungsanschluss zusammenfällt (meist dem negativen; single-supply), oder ob sie auf einem anderen Gleichspannungspotential liegt. Die Angabe ±15 V ist deshalb gleichwertig mit der Angabe +30 V.

Gleichtakt-SpannungsbereicheBearbeiten

Sowohl für den Ausgang, als auch für die Eingänge, gelten Einschränkungen bzgl. des Spannungsbereiches relativ zu den Betriebsspannungen, in dem das Bauteil normal arbeitet (im linearen Bereich). Der erlaubte Bereich für die Spannungen an den Eingängen wird engl. „Input Common Mode Range“ genannt. Wird er verlassen, kommt es zu einem Einbruch der Verstärkung, je nach Bauteil auch zu drastischeren Konsequenzen. Bei manchen Modellen kehrt sich die Rolle der Eingänge um. Wird der Bereich der Versorgungsspannung verlassen, kann bei vielen Modellen das Bauteil bleibend beschädigt werden.

Manche Modelle erlauben Eingangsspannungen unterhalb der negativen Versorgung (meist einige 100 mV), andere Modelle erlauben Spannungen oberhalb der positiven Versorgung (ebenfalls meist einige 100 mV). Typen mit „Rail-to-Rail“ Eingängen erlauben beides.

Für den Ausgang gilt ähnliches, außer dass Spannungen außerhalb der Betriebsspannungen nicht unterstützt werden. Sehr wenige Ausnahmen mit eingebauten Ladungspumpen existieren für spezielle Einsatzgebiete.

Versorgungsspannungsdurchgriff und GleichtaktdurchgriffBearbeiten

Ein idealer Operationsverstärker erzeugt seine Ausgangsspannung ohne jeden Fremdeinfluss, z. B. aus der Spannungsversorgung. In realen OPs existiert ein solcher Einfluss, d. h. geringe Reste einer Störung auf der Spannungsversorgung finden sich auch im Ausgangssignal.

Die Auswirkung von Versorgungsspannungsschwankungen auf die Ausgangsspannung wird als Versorgungsspannungsdurchgriff (englisch Power supply rejection ratio, PSRR) bezeichnet und durch eine passende Auslegung der internen Schaltung möglichst gut unterdrückt. Einfache Operationsverstärker erreichen eine PSRR von 70 dB.

Ebenso gibt es auch einen Einfluss des Gleichtaktsignals auf die Ausgangsspannung. Ein Gleichtaktsignal liegt am Eingang vor, wenn sich die Spannung an beiden Eingängen relativ zur Masse parallel ändern. Da der OP nur die Differenz zwischen den Eingängen verstärken sollte, müsste der Ausgang unbeeinflusst bleiben. In der Realität verbleibt ein geringer Einfluss, dessen Größe in Dezibel als Gleichtaktdurchgriff (engl. common mode rejection ratio, CMRR) angegeben wird.

Temperaturbereich, Gehäuse und KühlungBearbeiten

 
Verschiedene Varianten von OPs, Hochleistungs­typen, SMD-Gehäuse, Mehrfachausführungen

Integrierte Operationsverstärker werden meistens für einen Bereich der Umgebungstemperatur von 0 °C bis 70 °C bis hin zu −55 °C bis 125 °C angeboten. Darüber hinaus gibt es spezielle Typen für Umgebungstemperaturen von mehr als 200 °C, beispielsweise der Vierfachoperationsverstärker HT1104[26] von Honeywell.

Die im OP entstehende Verlustleistung heizt das Bauteil intern über die Umgebungstemperatur hinaus auf. Zusätzlich zur Einschränkung der Umgebungstemperatur gilt daher eine Einschränkung der maximalen Chiptemperatur (genauer: Sperrschicht-Temperatur, meistens mit TJ bezeichnet, Grenze oft bei 150 °C), um seine Beschädigung zu vermeiden. Ggf. muss die Temperaturerhöhung abgeschätzt werden, zu diesem Zweck macht der Hersteller Angaben über den Wärmewiderstand zwischen dem Chip und der Umgebung, abhängig von der Art der Montage. Je nach abzuleitender Verlustleistung als Wärme gibt es unterschiedliche Gehäuseformen, die unterschiedliche Arten der Montage erlauben, z. B. auch an Kühlkörpern.

Es ist üblich, für einen OP mehrere Gehäusevarianten anzubieten. Damit werden nicht nur unterschiedliche Kühlungsanforderungen abgedeckt, sondern auch unterschiedliche Montagetechniken und Miniaturisierungsstufen unterstützt. Die in der Anfangszeit dominanten Gehäuseformen waren für den Einsatz in Stecksockeln vorgesehen, heute jedoch dominiert die SMD-Löttechnik. Die relativ großen und bastelfreundlichen DIL-Gehäuse sind noch immer verbreitet, aber die kleineren SMD-Gehäuse werden in erheblich größeren Mengen produziert. Neuere OP-Modelle sind oft nur noch in kleinen SMD-Gehäusen verfügbar. Die kleinsten Varianten sind kaum noch größer als der Silicium-Chip selbst.

Ausgangsimpedanz und -stromBearbeiten

Der Ausgangswiderstand eines idealen OP ist bei einem Spannungsausgang 0, bei einem Stromausgang unendlich. Dabei sind Ausgangsspannung und Ausgangsstrom unbegrenzt. Das ist in der Realität nicht erreichbar.

Die Ausgangstufe eines Operationsverstärkers besitzt eine Strom-Spannungs-Kennlinie, die sich durch einen differentiellen Widerstand, den Ausgangswiderstand approximieren lässt. Durch diesen reduziert sich die Aussteuerbarkeit des Ausgangs nach dem ohmschen Gesetz in Abhängigkeit von dem Ausgangsstrom. Innerhalb dieser Grenzen kann der Ausgangswiderstand aufgrund der Gegenkopplung meistens vernachlässigt werden; eine Ausnahme bildet eine kapazitive Belastung des Ausgangs, die ein RC-Glied bzw. einen Tiefpass innerhalb der Gegenkopplung bildet. Die sich daraus ergebende Phasenverschiebung kann zur Instabilität der Gesamtschaltung führen.

Der maximale Ausgangsstrom liegt meistens bei einigen 10 mA, der Ausgang ist normalerweise kurzschlussfest. Darüber hinaus gibt es spezielle integrierte Operationsverstärker, die Ausgangsströme von bis zu 10 A[27] liefern können. Diese werden in passende Gehäuse eingebaut, die die mit den hohen Strömen einhergehende Verlustwärme ableiten können. Alternativ können auch externe komplementäre Transistor-Kollektorstufen die Laststromerhöhung eines OP vornehmen.

EingangsimpedanzBearbeiten

Die Spannungseingänge eines idealen OP haben eine unendliche Eingangsimpedanz. Im Falle von Stromeingängen ist sie 0. Das ist real nicht erreichbar.

Alle OPs haben parasitäre Eingangskapazitäten, meist wenige pF. Diese machen sich insbesondere bei höheren Frequenzen bemerkbar.

Die Eingangswiderstände eines realen Operationsverstärkers lassen sich in zwei Gruppen unterteilen:

Gleichtakt-Eingangswiderstände
Diese beiden Widerstände liegen zwischen dem jeweiligen Eingang und Masse. Sie liegen also parallel zu den Eingängen und werden daher durch eine Gegenkopplung nicht beeinflusst. Der Gleichtaktwiderstand am nichtinvertierenden Eingang bewirkt eine Abschwächung, der am invertierenden Eingang eine Steigerung der Verstärkung. Wenn diese Widerstände im Operationsverstärker abgeglichen sind, kompensieren sich ihre Wirkungen vollständig. Bei realen Operationsverstärkern treten zwar leichte Abweichungen auf, da aber die Gleichtakteingangswiderstände generell sehr hochohmig sind, im Bereich einiger 10 MΩ aufwärts, kann ihr Einfluss meistens vernachlässigt werden.
Differenz-Eingangswiderstand
Dieser Widerstand liegt zwischen nichtinvertierendem und invertierendem Eingang und wirkt durch eine Gegenkopplung dynamisch stark erhöht. Durch eine Gegenkopplung bei nur endlicher Gleichtaktunterdrückung wird die Spannung zwischen den beiden Eingängen immer nahe null Volt gehalten, womit dynamische Widerstandswerte im Bereich von einigen 10 GΩ aufwärts typisch sind.

EingangsströmeBearbeiten

Die goldenen Regeln fordern, dass keine Ströme in die Eingänge fließen. In der Praxis fließen allerdings geringe parasitäre Ströme, die sich zwischen den OP-Modellen sehr stark unterscheiden.

Die parasitären Eingangsströme entsprechen den Basis- bzw. Gate-Strömen der Eingangstransistoren. Die typischen Werte für Operationsverstärkern mit Feldeffekttransistoren liegen bei wenigen pA bei Raumtemperatur, steigen aber mit der Temperatur stark an. Bei Bipolartransistoren liegen die Eingangsströme typisch im Bereich 1 nA bis 1 µA und sind nur wenig von der Temperatur abhängig.

Die Eingangsströme der beiden Eingänge sind zwar in ähnlicher Größenordnung, aber nicht exakt gleich. Deswegen wird in Herstellerspezifikationen meistens neben dem mittleren Eingangsruhestrom (engl. input bias current) auch die Differenz der Ströme (engl. input offset current) angegeben.

Die Größe des durch die Eingangsströme verursachten Fehlers hängt direkt proportional mit der Wahl der externen Beschaltungswiderstände zusammen. Je hochohmiger die Widerstände dimensioniert werden, desto größer wirken sich Eingangsströme als Fehler aus. Bei gleichen Widerständen und Strömen an beiden Eingängen können sich die Fehler weitgehend aufheben.

Offset-SpannungBearbeiten

Die Offset-Spannung ist eine Kenngröße von Operationsverstärkern als Folge systematischer Fehler in einer Schaltung. Sie ist die Differenz der Eingangsspannungen, wenn die Ausgangsspannung 0 V ist.

Die produktionsbedingten Offset-Spannungen liegen typisch im Bereich von 1 bis 10 mV. Die Offset-Spannung wird bei bestimmten Typen, beispielsweise dem OP27, durch Abgleich bei der Herstellung in den Bereich 10 µV und darunter abgesenkt, diese weisen meistens auch eine geringe Temperaturabhängigkeit von typisch weniger als 1 µV/K auf. Eine weitere Reduktion bis zu 1 µV ist durch eine so genannte Chopper-Stabilisation möglich, bei der während des Betriebs die Offset-Spannung gemessen und kompensiert wird; diese eliminiert auch den Temperaturdrift der Offset-Spannung weitgehend.

RauschenBearbeiten

Das Rauschen von Operationsverstärkern lässt sich durch Angabe einer auf den Eingang bezogenen Rauschspannungsdichte und Rauschstromdichte beschreiben. Das Rauschen eines Operationsverstärkers setzt sich aus zwei Komponenten zusammen:

1/f-Rauschen
Unterhalb von typischerweise 10 bis 50 Hz (bipolar) bzw. 250 bis 5000 Hz (MOS) steigt der Erwartungswert des Rauschleistungsdichtespektrums mit 8,5 bis 9 dB/Dekade zu tieferen Frequenzen hin an.
Weißes Rauschen
Dieses Rauschen hat einen frequenzunabhängigen Erwartungswert im Leistungsdichtespektrum. Typische Werte liegen im Bereich von 1 nV/Hz1/2 bis 100 nV/Hz1/2 und 1 fA/Hz1/2 bis 5 pA/Hz1/2. Die Rauschspannung und der Rauschstrom ergeben sich aus der jeweiligen Kennzahl multipliziert mit der Wurzel der betrachteten Bandbreite.

Das Rauschen wird überwiegend durch den Aufbau des Differenzverstärkers bestimmt. Werden dafür JFETs oder MOSFETs verwendet, ergibt sich ein niedriges Strom-, aber vergleichsweise hohes Spannungsrauschen. Umgekehrt verhält es sich bei Differenzverstärkern, die auf Bipolartransistoren basieren, insbesondere wenn der Differenzverstärker mit hohem Strom betrieben wird. Ein Beispiel für einen Operationsverstärker mit geringem Spannungsrauschen ist der Typ AD797[28] von Analog Devices. Operationsverstärker mit niedrigem Spannungsrauschen haben ein hohes Stromrauschen und umgekehrt.

Wie stark sich das Stromrauschen auswirkt wird durch die Widerstände an den Eingängen bestimmt. Wesentliche ist der Gesamtbetrag der beiden Rauschquellen. Bei niedrigen Quellenwiderständen kommt es vor allem auf das Spannungsrauschen des Operationsverstärkers an, während bei hohen Quellenwiderständen das Stromrauschen des Verstärkers am Generatorwiderstand wichtig wird. Hier gilt es, den zur Problemstellung passenden Typ zu wählen.

Wird der Wert der Rauschspannung durch den Rauschstrom geteilt, erhält man einen Wert mit der Einheit Ohm. Eine Signalquelle mit dieser Impedanz stellt für diesen OPV die Quelle da, die er am rauschärmsten verstärken kann. Bei diesem Widerstandswert sind die Beiträge des Strom- und Spannungsrauschens gleich. Unterscheidet sich dieser Wert um einen Faktor von mehr als 3 von der Quellimpedanz, ist der Operationsverstärker im Hinblick auf sein Rauschverhalten für die Aufgabenstellung nicht optimal, man verliert mehr als 3 dB SNR. Eine weitere wichtige Größe ist die Rauschzahl, die beschreibt, um wie viel der OPV mehr als ein Widerstand rauscht.

Frequenzkompensation und Verstärkungs-Bandbreite-ProduktBearbeiten

 
Mit sinkender Verstärkung vergrößert sich die Bandbreite. Unter Bandbreite versteht man den Bereich konstanter Verstärkung.

Ein idealer OP hat eine unbegrenzte Bandbreite und eine unendliche Verstärkung und kann daher Signale beliebiger Frequenz verstärken. Das ist nicht praktisch realisierbar, OPs zeichnen sich daher durch eine begrenzte Bandbreite, d. h. eine maximale Signalfrequenz aus. Dies ist nicht nur ein Nachteil, denn eine begrenzte Bandbreite hilft auch bei der Vermeidung von Eigenschwingungen, die durch Phasenverschiebungen in der Rückkopplungsschleife ermöglicht werden (Siehe das Stabilitätskriterium von Nyquist oder das Stabilitätskriterium von Barkhausen). Es ist daher sinnvoll, eine zur Aufgabe passende Verstärkerbandbreite zu wählen, die den besten Kompromiss zwischen den auftretenden Signalfrequenzen und der Stabilität der Schaltung ergibt.

Die Geradeausverstärkung (das ist die Verstärkung ohne externe Beschaltung, auch Leerlaufverstärkung) ist das Verhältnis der Änderung von Ausgangsspannung zur Eingangsspannungsdifferenz. Bei integrierten Operationsverstärkern liegt dieser Verstärkungsfaktor bei niedriger Frequenz nicht selten über einer Million, was eine sehr gute Annäherung an den idealen OP darstellt. Durch Frequenzkompensation sinkt dieser Verstärkungsfaktor jedoch mit steigender Frequenz.

Bei den meisten VV-OPVs wird eine Frequenzkompensation bevorzugt, die zu einem konstanten Verstärkungs-Bandbreite-Produkt führt. Die Geradeausverstärkung des so kompensierten Verstärkers sinkt ab einer bestimmten, relativ niedrigen Frequenz, der Grenzfrequenz, stetig mit 20 dB pro Dekade ab (siehe Diagramm). Das Produkt aus Frequenz und Verstärkung wird in diesem Bereich konstant, und über diesen Bereich zeigt der Verstärker eine weitgehend konstante Phasenverschiebung von 90° (siehe dazu auch Bode-Diagramm). Ist der OP intern kompensiert, dann ist dieses Verstärkungs-Bandbreite-Produkt (englisch gain bandwidth product – GBP, GBW oder GB) fest, und im Datenblatt angegeben. Ist er extern kompensiert, dann muss es durch die Wahl eines extern anzuschliessenden Kondensators festgelegt werden. Das Verstärkungs-Bandbreite-Produkt kann je nach Typ des Operationsverstärkers von 100 kHz (bei Micropower-Versionen) bis hinein in den Gigahertz-Bereich variieren.

Die Transitfrequenz beschreibt jene Frequenz, bei der die Geradeausverstärkung (Differenzverstärkung) des Operationsverstärkers genau 0 dB wird, das heißt die Verstärkung genau den Betrag 1 erreicht. Sie entspricht näherungsweise dem Verstärkungs-Bandbreite-Produkt.

Beim stromrückgekoppelten Operationsverstärker (CV-OPV) ergibt sich die Möglichkeit, über den niederohmigen invertierenden Stromeingang mittels der Impedanz der Gegenkopplungsschleife das Vorwärtsverstärkungsverhalten und damit das GBP zu steuern. Für große Verstärkungen kann es höher gewählt werden; bei kleinen Verstärkungen wird es herabgesetzt und ermöglicht einen stabilen Betrieb. So ergibt sich beim CV-OPV im Gegensatz zum VV-OPV eine von der Verstärkung unabhängige nutzbare Bandbreite und ein nicht konstantes Verstärkungs-Bandbreitenprodukt. Daraus resultiert ein Vorteil des CV-OPV bei hohen Frequenzen.

Beim VC-OPV und beim CC-OPV kann eine Frequenzkompensation durch kapazitive Belastung des Ausgangs erreicht werden. Im Gegensatz zu einem VV-OPV reduziert eine kapazitive Last am Ausgang nicht die Stabilität, sondern reduziert die Bandbreite und trägt damit zur Stabilität bei.

SpannungsanstiegsrateBearbeiten

Die Spannungsanstiegsgeschwindigkeit (engl. slew rate) kennzeichnet die maximal mögliche zeitliche Spannungsänderung (Flankensteilheit) des Operationsverstärkerausgangs. Sie wird im Bereich der Großsignalaussteuerung eines Operationsverstärkers festgelegt. Bei der Großsignalaussteuerung wird der Operationsverstärker nicht wie bei der Kleinsignalaussteuerung im linearen Bereich betrieben, sondern bis an die Übersteuerungsgrenzen ausgesteuert und auch in Sättigung getrieben. Die Spannungsanstiegsrate wird meistens in V/µs angegeben und bewegt sich bei

  • Standard-Operationsverstärker (z. B. LM741) zwischen 0,1 V/µs und 10 V/µs
  • Highspeed-Operationsverstärker (z. B. LF356, OPA637) zwischen 10 V/µs und 50.000 V/µs

Ein idealer Operationsverstärker würde eine unendlich hohe Spannungsanstiegsrate aufweisen. Während das Verstärkungs-Bandbreite-Produkt bei kleinen Signalamplituden die Frequenz bestimmt, bei der ein Signal noch die gewünschte Verstärkung erfährt, wird das Signal bei größeren Amplituden zusätzlich durch die Spannungsanstiegsrate begrenzt. Insbesondere bei Signalen, die sehr steile Flanken aufweisen (wie Rechtecksignale), ist die Spannungsanstiegsrate oft das wichtigere Auswahlkriterium.

Bei einem typischen VV-OPV mit Frequenzkompensation durch Miller-Kondensator ist die Ursache für die endliche Spannungsanstiegsrate gewöhnlich der begrenzte Ausgangsstrom der Differenzsstufe. Die Kombination der Differenzstufe als Stromquelle mit dem Miller-Kondensator wirkt als Integrator, dessen Anstiegsgeschwindigkeit vom Verhältnis zwischen dem wirksamen Kapazitätswert und der Strombegrenzung der Differenzstufe bestimmt wird. Möglicherweise gelten dabei für ansteigende und abfallende Signale unterschiedliche Stromgrenzen, und damit unterschiedliche Anstiegsraten. Die Wahl des Kondensators für die Frequenzkompensation hat demzufolge bei einem VV-OPV Einfluss auf das Verstärkungs-Bandbreite-Produkt, und zugleich auf die Spannungsanstiegsrate.

OPs mit Stromausgang (VC-OPV und CC-OPV) verhalten sich in dieser Hinsicht anders. Ihre Spannungsanstiegsrate hängt von der kapazitiven Last am Ausgang ab und ist daher im Datenblatt nicht angegeben.

Nichtlineares VerhaltenBearbeiten

Wie jeder Verstärker zeigen auf Operationsverstärkern basierende Schaltungen ein nichtlineares Übertragungsverhalten. Dies kann erwünscht sein, zum B. um mathematische Operationen wie Exponential- oder Logarithmusfunktion darzustellen, um Filterfunktionen (wie Tief- oder Hochpass) zu realisieren oder bestimmte Messfunktionen (z. B. Scheitelwertbestimmung) zu implementieren. In diesen Fällen ist die Nichtlinearität Teil des Schaltungsdesigns und wird im Wesentlichen durch die äußere Beschaltung bestimmt.

Nichtlineares Verhalten zeigt sich aber auch in Schaltungen wie dem nichtinvertierenden Verstärker, dessen Ausgangssignal idealerweise ein linear verstärktes Abbild des Eingangsignals sein sollte. Dabei kommt es zu unerwünschten Verzerrungen des zu übertragenden Signals. Wie groß die Anteile durch nichtlineare Verzerrung sind, wird als THD (englisch Total Harmonic Distortion; übersetzt etwa: Gesamte harmonische Verzerrung) angegeben. Als Ursachen für Verzerrungen können grundsätzlich unterschieden werden:

  • intrinsische Verzerrungen des gewählten OpAmp-Typs
  • Überschreitung zulässiger Bereichsgrenzen

Typ-spezifische VerzerrungBearbeiten

Typ-abhängige Verzerrungen ergeben sich insbesondere durch interne Kapazitäten und Stromquellen mit (zwangsläufig) begrenzter Impedanz; sie betreffen in erster Linie das Kleinsignalverhalten. Besondere Bedeutung haben die mit steigender Signalfrequenz sinkende Leerlaufverstärkung und die in Folge abnehmende Impedanz der Verstärkerendstufe: Verzerrungen nehmen bei höheren Frequenzen zu. Viele IC-Hersteller machen dazu Angaben in den Datenblättern.[29] Besonders geeignet zur Messung solcher intern erzeugten Verzerrungen ist der nichtinvertierende Verstärker.[30]

Verzerrungen durch BereichsüberschreitungenBearbeiten

Ist der Eingangspegel für die gewählte Verstärkung zu hoch, wird der Ausgang vollständig bis an die von den Versorgungsspannungen vorgegebenen Grenzen ausgesteuert. Sobald sich der Ausgang diesen nähert, flacht die Kurve der Übertragungsfunktion abrupt ab (englisch Clipping); das Ausgangssignal wird zunehmend mit Obertönen angereichert und dadurch verzerrt. Diese Form der Nichtlinearität betrifft das Großsignalverhalten und kann durch sorgfältige Auslegung der Schaltung vermieden werden.

Reale Operationsverstärker unterliegen einer Vielzahl von Beschränkungen, in deren Nähe nicht lineares Verhalten zunimmt. Wichtig sind insbesondere: Ausgangsspannungsbereich, Eingangsspannungsbereich (englisch input common mode range), Verstärkungs-Bandbreitenprodukt (englisch gain bandwidth product), Spannungsanstiegsrate (englisch slew rate) sowie die Belastung durch nachfolgende Verbraucher (englisch load).

Der erreichbare Ausgangsspannungsbereich hängt vom jeweiligen OpAmp-Typ sowie den gewählten Versorgungsspannungen ab. Verzerrungen im Zusammenhang mit dem Eingangsspannungsbereich betreffen in erster Linie den nichtinvertierenden Verstärker, darunter am stärksten den Spannungsfolger. Sind Signalfrequenz- und Spannungshub zu groß für die maximale Spannungsanstiegsrate des Operationsverstärkers, verändert sich die Signalform; so kann ein Sinus die Form eines Dreiecks annehmen. Allgemein lässt sich sagen, dass Verzerrungen mit steigender Frequenz und niedrigeren Lastimpedanzen zunehmen. All diese Formen nichtlinearen Verhaltens können grundsätzlich durch das Schaltungsdesign beeinflusst werden.[31]

Ein wichtiger Fall nichtlinearen Verhaltens betrifft das zeitliche Ansprechverhalten von Operationsverstärkern, die sich in Sättigung befunden haben (voll ausgesteuert waren). Wird das Eingangssignal soweit reduziert, dass keine Sättigung mehr vorliegt, kommt der Ausgang nicht unmittelbar in den linearen Betriebsbereich zurück, sondern benötigt dafür eine bestimmte Zeitspanne. Diese ist bei den meisten Operationsverstärkern nicht spezifiziert. Auch das Verhalten des Operationsverstärkers innerhalb dieser Zeitspanne ist meist nicht spezifiziert und unterliegt starken Exemplarstreuungen. Durch diesen hystereartigen Effekt kommt es naturgemäß zu einer extremen Signalverzerrung. Aus diesem Grund sollte es schaltungstechnisch vermieden werden, den Operationsverstärker in die Sättigung zu treiben.

LiteraturBearbeiten

  • Joachim Federau: Operationsverstärker. 3. Auflage. Vieweg, Wiesbaden 2006, ISBN 3-528-23857-7.
  • Walter G. Jung (Editor): OP AMP Applications. Firmenschrift Analog Devices, Norwood 2002, ISBN 0-916550-26-5 (analog.com – E-Book).
  • Ron Mancini: Op Amps for Everyone. Design Reference. 2. Auflage. Elsevier, Oxford 2003, ISBN 0-7506-7701-5 (focus.ti.com – E-Book).
  • Linear-IC-Taschenbuch. 1. Auflage. Band 1: Operationsverstärker. IWT-Verl, Vaterstetten bei München 1991, ISBN 3-88322-349-2.
  • Stefan Gossner: Grundlagen der Elektronik (Halbleiter, Bauelemente und Schaltungen). 11. Aufl. Shaker, 2019, ISBN 978-3-8440-6784-2.
  • Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 13. Auflage. Springer, 2010, ISBN 978-3-642-01621-9.

WeblinksBearbeiten

Commons: Operationsverstärker – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 13. Auflage. Springer, 2010, ISBN 978-3-642-01621-9.
  2. P. Horowitz und W. Hill: The Art of Electronics. Cambridge University Press, 2015, ISBN 978-0-521-80926-9, S. 225.
  3. Op Amp History (PDF) Analog Devices.
  4. K. D. Swartzel, Jr.: Summing Amplifier. US-Patent 2.401.779, vom 1. Mai 1941, veröffentlicht am 11. Juli 1946.
  5. John R. Ragazzini, Robert H. Randall, Frederick A. Russell: Analysis of Problems in Dynamics by Electronics Circuits. In: Proceedings of the IRE, Nr. 35, 1947, S. 444–452.
  6. Walter G. Jung: Kapitel 1 – History of OpAmp. In: Op Amp Applications Handbook (Analog Devices Series). Newnes, 2004, ISBN 0-7506-7844-5, S. H. 1–H. 72 (PDF-Version).
  7. Data Sheet For Model K2-W Operational Amplifier. George A. Philbrick Researches Inc., Boston 1953.
  8. Henry Paynter (Hrsg.): Applications Manual for PHILBRICK OCTAL PLUG-IN Computing Amplifiers. George A. Philbrick Researches Inc., Boston 1956 (PDF-Version).
  9. Dan Sheingold (Hrsg.): Application Manual for Operational Amplifiers for Modeling, Measuring, Manipulating, and Much Else. George A. Philbrick Researches Inc., Boston 1965 (PDF-Version).
  10. H. M. Paynter: In Memoriam: George A. Philbrick. In: ASME Journal of Systems, Measurement and Control, June 1975. S. 213–215.
  11. Robert Allen Pease: Design of a Modern High-Performance Amplifier. In: GAP/R Lightning Empiricist. 11, Nr. 2, 1963.
  12. Analog Devices (Hrsg.): 2 Ultrafast Op Amps: AD3554 & HOS-050C. In: Analog Dialogue (Firmenschrift). 16, Nr. 2, 1982, S. 24 (Produktvorstellung, PDF).
  13. Robert J. Widlar: A Unique Circuit Design for a High Performance Operational Amplifier Especially Suited to Monolithic Construction. In: Proceedings of the NEC. 21., 1965, S. 85–89.
  14. Dave Fullagar: A New High Performance Monolithic Operational Amplifier. In: Fairchild Semiconductor Application Brief. 1968.
  15. Patent US4502020: Settling Time Reduction In Wide-Band Direct-Coupled Transistor Amplifier. Veröffentlicht am 1983, Erfinder: David Nelson, Kenneth Saller.
  16. Hanspeter Schmid: Approximating the Universal Active Element. In: IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, Vol. 47, No. 11, November 2000. S. 1160–1169.
  17. Adel S. Sedra, Gordon W. Roberts: Current Conveyor Theory and Practice. In: Analogue IC design: the current mode approach. Peter Peregrinus, 1990.
  18. Leonhard Stiny: Aktive elektronische Bauelemente. 3. Auflage. Springer Vieweg, 2016, S. 474
  19. Erwin Böhmer, Dietmar Ehrhardt, Wolfgang: Elemente der angewandten Elektronik. 16. Auflage. Vieweg+Teubner, 2010, S. 159
  20. Elmar Schrüfer: Elektrische Messtechnik. 3. Auflage. Hanser, 1988, S. 128 ff
  21. Hans-Rolf Tränkler: Taschenbuch der Messtechnik. 4. Auflage. Oldenbourg, 1996, S. 77 ff
  22. a b Thomas Kugelstadt: Integrierte Logarithmierverstärker für die Industrie, abgerufen am 2. August 2020
  23. Hans-Rolf Tränkler: Taschenbuch der Messtechnik. 4. Auflage. Oldenbourg, 1996, S. 87.
  24. Erwin Böhmer: Elemente der angewandten Elektronik. 9. Auflage. Vieweg, 1994, S. 187
  25. Ulrich Tietze, Christoph Schenk: Halbleiterschaltungstechnik. 8. Aufl. Springer, 1986, ISBN 3-540-16720-X, Kapitel 13 Gesteuerte Quellen und Impedanzkonverter.
  26. Datenblatt des HT1104 von Honeywell (Memento vom 29. Oktober 2006 im Internet Archive) (PDF).
  27. Datenblatt des LM12CL von National Semiconductors (Memento vom 28. September 2009 im Internet Archive) (PDF).
  28. Datenblatt des AD797 (Memento vom 9. Dezember 2006 im Internet Archive) (PDF).
  29. P. Horowitz und W. Hill: The Art of Electronics. Cambridge University Press, 2015, ISBN 978-0-521-80926-9, S. 329–332.
  30. Douglas Self: Small Signal Audio Design. Focal Press, 2014, ISBN 978-0-415-70974-3, S. 125–127.
  31. Douglas Self: Small Signal Audio Design. Focal Press, 2014, ISBN 978-0-415-70974-3, S. 127–142.
Dieser Artikel wurde am 15. September 2006 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.