Hauptmenü öffnen

Ein Vierervektor, ein Begriff der Relativitätstheorie, ist ein Vektor in einem reellen, vierdimensionalen Raum mit einem indefiniten Längenquadrat. Beispielsweise sind die Zeit- und Ortskoordinaten eines Ereignisses in der Raumzeit die Komponenten eines Vierervektors, ebenso die Energie und der Impuls eines Teilchens.

In zwei gegeneinander bewegten Inertialsystemen lassen sich die Komponenten der beiden Vierervektoren durch eine Lorentz-Transformation ineinander überführen.

Inhaltsverzeichnis

SchreibweiseBearbeiten

Man verwendet die Abkürzungen

  •   für die kontravariante
  •   für die kovariante Darstellung eines Vierervektors. (Details zu kontra- und kovarianten Vektoren s. letztes Kapitel dieses Artikels.)

Meist werden griechische Indizes verwendet, wenn diese die Werte 0, 1, 2, 3 durchlaufen, während lateinische Indizes nur die Werte 1, 2, 3 der räumlichen Koordinaten durchlaufen. Dabei werden in der Relativitätstheorie bevorzugt die Buchstaben   geschrieben.

Hierbei wurde die Metrik des Minkowskiraums der speziellen Relativitätstheorie benutzt und der zugehörige metrische Tensor  , in der Allgemeinen Relativitätstheorie ist der (ortsabhängige) metrische Tensor   zu wählen.

OrtsvektorBearbeiten

Der Ortsvektor oder Orts-Vierervektor eines Teilchens beinhaltet sowohl die Zeitkoordinate   als auch die Raumkoordinaten   eines Ereignisses. Die Zeitkoordinate wird in der Relativitätstheorie mit der Lichtgeschwindigkeit   multipliziert, so dass sie wie die Raumkoordinaten die Dimension einer Länge hat.

Die kontravariante Darstellung des Orts-Vierervektors ist

 .

Dass   ein kontravarianter Vierervektor ist, folgt daraus, dass er ein Koordinatenvektor zu einer orthonormalen Basis des Minkowskiraums ist und sich dementsprechend bei Basiswechsel kontravariant mittels einer Lorentz-Transformation ändert.

In der Metrik der flachen Raumzeit hat die Zeitkoordinate das entgegengesetzte Vorzeichen der drei Raumkoordinaten:

 

Die Metrik hat also die Signatur (+ − − −) oder (− + + +). Insbesondere in Texten zur speziellen Relativitätstheorie wird überwiegend die erste Signatur verwendet, dies ist aber nur eine Konvention und variiert je nach Autor.

Abgeleitete VierervektorenBearbeiten

Aus dem Orts-Vierervektor lassen sich weitere Vierervektoren ableiten und definieren.

VierergeschwindigkeitBearbeiten

Der Vierervektor   der Geschwindigkeit ergibt sich durch Differentiation des Ortsvektors   nach der Eigenzeit  :

 

mit der Eigenzeit  , die über die Zeitdilatation mit der Koordinatenzeit   verknüpft ist:

 

mit dem Lorentzfaktor  

Daraus folgt für die Vierergeschwindigkeit:

 

Die Norm der Vierergeschwindigkeit ergibt sich sowohl in der speziellen als auch in der allgemeinen Relativitätstheorie zu

  .

ViererimpulsBearbeiten

Der Viererimpuls wird analog zum klassischen Impuls definiert als

 

wobei   die Masse des Körpers ist. Im Vergleich mit der Newtonschen Mechanik wird die Kombination   zuweilen als „dynamisch zunehmende Masse“ interpretiert und   als „Ruhemasse“ bezeichnet, was allerdings leicht zu falschen Schlussfolgerungen durch eine hier unangemessene klassische Betrachtungsweise führen kann. Im konsequenten Viererkalkül ohne Bezug auf die nicht-relativistische Physik ist nur die koordinatenunabhängige Masse   von praktischer Bedeutung.

Mit der Äquivalenz von Masse und Energie   kann der Viererimpuls geschrieben werden als

 

mit dem relativistischen räumlichen Impuls  , der sich vom klassischen Impulsvektor um den Lorentzfaktor   unterscheidet.

Da der Viererimpuls die Energie und den räumlichen Impuls vereinigt, wird er auch als Energie-Impuls-Vektor bezeichnet.

Aus dem Quadrat der Norm des Viererimpulses   ergibt sich die Energie-Impuls-Beziehung

 

aus der eine zeit- und ortsunabhängige Hamilton-Funktion für freie, relativistische Teilchen abgeleitet werden kann.

ViererbeschleunigungBearbeiten

Durch nochmaliges Ableiten der Vierergeschwindigkeit   nach   erhält man die Viererbeschleunigung.

Die 0-te Komponente der Viererbeschleunigung bestimmt sich zu

 

Die räumlichen Komponenten der Viererbeschleunigung lauten

 

Insgesamt erhält man für die Viererbeschleunigung das Ergebnis

 

Die Viererbeschleunigung besteht aus einem Teil mit Faktor   und einem Teil mit  . Man erhält also für Beschleunigungen parallele und orthogonal zu   unterschiedliche Viererbeschleunigungen. Mit der Graßmann-Identität

 

kann man den Ausdruck für den räumlichen Teil des Vierervektors umformen. Man findet, dass

 

ist. Es folgt

 

und somit insgesamt

 

Viererkraft und Bewegungsgleichung Bearbeiten

Wie bereits beim Viererimpuls kann eine Viererkraft, auch Minkowskikraft genannt, analog zur entsprechenden newtonschen Kraft definiert werden:

 

Dies ist die Bewegungsgleichung der speziellen Relativitätstheorie. Sie beschreibt beschleunigte Bewegungen in einem Inertialsystem.

Weiter kann die Viererkraft mit der newtonschen Kraft   in Beziehung gesetzt werden: In dem Inertialsystem, in dem die Masse annähernd ruht (sie ruhe zum Zeitpunkt  , dann gilt für genügend kleines   wegen der beschränkten Beschleunigung: ), muss die klassische Newtonsche Gleichung gelten:

 

mit dem räumlichen Teil   der Viererkraft.

In einem beliebigen Inertialsystem gilt

 ,

wobei   der räumliche Anteil der Vierergeschwindigkeit ist. Das heißt, der Raumanteil der Minkowskikraft ist die Newtonsche Kraft, wobei der zur Geschwindigkeit parallele Anteil mit   multipliziert ist.

Die durch die Beschleunigung mit   übertragene Leistung ist  .

In dem Spezialfall, dass eine Newton’sche Kraft   allein parallel zur Geschwindigkeit wirkt, folgt aus der Bewegungsgleichung für Vierervektoren der Zusammenhang zwischen Newton’scher Kraft und räumlicher Beschleunigung:

 

Für räumliche Kräfte senkrecht zur Bewegungsrichtung folgt hingegen

 .

Der bei Impulsbetrachtungen zuweilen eingeführte Begriff einer „dynamischen“ relativistischen Masse für den Term   ist daher im Vergleich mit der Newton’schen Bewegungsgleichung missverständlich. Denn für beliebige Raumrichtungen ist der Zusammenhang zwischen den räumlichen Größen   und   zwar linear, aber keine einfache Proportionalität.

Ko- und kontravariante VektorenBearbeiten

Die Komponenten eines kontravarianten Vierervektors   gehen bei Lorentztransformationen   über in:

 

Man schreibt seine Komponenten mit oben stehenden Zahlen:  

Die Komponenten eines kovarianten Vierervektors folgen dem kontragredienten (entgegengesetzten) Transformationsgesetz:

 

Man schreibt seine Komponenten mit unten stehenden Zahlen:  

Die beiden Transformationsgesetze sind nicht gleich, aber äquivalent, denn definitionsgemäß erfüllen sie:

 

mit der üblichen Minkowski-Metrik der SRT:

 

Daher ergibt

 

die Komponenten des kovarianten Vektors, der dem kontravarianten Vektor   zugeordnet ist.

Dabei wird bei den Vierervektorindizes die Einsteinsche Summenkonvention verwendet. Das innere Produkt zweier Vierervektoren im Minkowskiraum ist gegeben durch:

 

Beispielsweise sind die partiellen Ableitungen einer Funktion   die Komponenten eines kovarianten Vektors.

Lorentztransformationen bilden   ab auf:

 

und definieren die transformierte Funktion   durch die Forderung, dass sie am transformierten Ort denselben Wert habe, wie die ursprüngliche Funktion am ursprünglichen Ort:

 

mit

 

Die partiellen Ableitungen transformieren wegen der Kettenregel kontragredient:

 

Siehe auchBearbeiten

LiteraturBearbeiten

WeblinksBearbeiten