Hauptmenü öffnen
Zwei Schätzfunktionen: Die Wahl einer verzerrten Statistik kann hinsichtlich ihrer erwarteten Abweichung vom wahren Wert gegenüber einer unverzerrten vorteilhaft sein.

Die mittlere quadratische Abweichung, auch der mittlere quadratische Fehler genannt und MQF oder MSE (aus dem englischen für mean squared error) abgekürzt, ist ein Begriff der mathematischen Statistik. Er gibt in der Schätztheorie an, wie sehr ein Punktschätzer um den zu schätzenden Wert streut. Damit ist er ein zentrales Qualitätskriterium für Schätzer.

Inhaltsverzeichnis

DefinitionBearbeiten

Gegeben sei ein statistisches Modell   sowie ein Punktschätzer

 

für eine zu schätzende Funktion (im parametrischen Fall die Parameterfunktion)

 

Dann heißt

 

die mittlere quadratische Abweichung von  . Dabei bezeichnet   den Erwartungswert bezüglich des Wahrscheinlichkeitsmaßes  . Mittels des Verschiebungssatzes der Varianz folgt die äquivalente Darstellung

 .

Hierbei bezeichnet   die Verzerrung des Schätzers, auch Bias genannt.

Für Schätzer, die Werte in einem allgemeinen Entscheidungsraum annehmen, der mit einer Norm   versehen ist lässt sich die mittlere quadratische Abweichung definieren als

 .

InterpretationBearbeiten

Eine geringe mittlere quadratische Abweichung bedeutet im klassischen Fall, dass gleichzeitig Verzerrung und Varianz des Schätzers klein sind. Man befindet sich mit dem Schätzer also im Mittel in der Nähe des zu schätzenden Funktionals (geringere Verzerrung) und weiß gleichzeitig, dass die Schätzwerte wenig streuen (geringe Varianz) und mit großer Wahrscheinlichkeit auch in der Nähe ihres Erwartungswerts liegen.

Mit dem MSE ist es daher möglich, Schätzverfahren miteinander zu vergleichen. Die Idee ist, dass es vorteilhaft sein kann, einen leicht verzerrten Schätzer zu bevorzugen, der dafür eine wesentlich kleinere Varianz besitzt. Dabei gilt das Schätzverfahren mit dem kleineren MSE in der Regel als das bessere.

Problematisch ist, dass der MSE vom zu schätzenden, unbekannten Grundgesamtheitsparameter abhängt.

BeispielBearbeiten

Ein typischer Fall ist die Schätzung des Mittelwerts einer Normalverteilung. Wir nehmen an, dass Zufallsvariablen   existieren, die jeweils normalverteilt mit unbekanntem Erwartungswert   und Varianz 1 sind. Der klassische Schätzer ist das Stichprobenmittel  . Hier ist die Verzerrung null:

 ,

da der empirische Mittelwert erwartungstreu für   ist. Da   selbst normalverteilt mit Erwartungswert   und Varianz   ist, folgt

 

Konsistenz im quadratischen MittelBearbeiten

Eine Schätzstatistik heißt konsistent im quadratischen Mittel, falls für   gilt[1]

 

Wirksamkeit von SchätzstatistikenBearbeiten

Gegeben seien zwei Schätzstatistiken   und  . Die Schätzstatistik   heißt MSE-wirksamer, wenn

 

für alle zulässigen Verteilungen gilt. Des Weiteren wird eine Schätzstatistik als MSE-wirksamst bezeichnet, wenn ihr MSE für alle zulässigen Verteilungen stets der kleinste ist.[2]

Einordnung und verwandte KonzepteBearbeiten

Interpretiert man die Schätztheorie als statistisches Entscheidungsproblem, so ist jeder Punktschätzer eine Entscheidungsfunktion. Die Abweichung der Entscheidungsfunktion von dem zu schätzenden Wert wird dann durch eine Verlustfunktion gewichtet. Diese gibt an, wie groß der "Schaden" ist, der durch eine Schätzung entsteht. Die Verlustfunktion wird dann mit der Entscheidungsfunktion zur Risikofunktion kombiniert, die den mittleren Schaden bei Verwendung einer bestimmten Entscheidungsfunktion angibt.

In diesem Kontext ist die mittlere quadratische Abweichung die Risikofunktion, die bei Verwendung der Gauß-Verlustfunktion

 

entsteht. Die Risikofunktion wird dann durch Erwartungswertbildung gewonnen.

Bei analoger Konstruktion unter Verwendung des Laplace-Verlustes erhält man den mittleren betraglichen Fehler

 .

LiteraturBearbeiten

EinzelnachweiseBearbeiten

  1. Ludwig Fahrmeir, Rita Künstler, Iris Pigeot, Gerhard Tutz: Statistik. Der Weg zur Datenanalyse. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2016, ISBN 978-3-662-50371-3, S. 344.
  2. Ludwig Fahrmeir, Rita Künstler, Iris Pigeot, Gerhard Tutz: Statistik. Der Weg zur Datenanalyse. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2016, ISBN 978-3-662-50371-3, S. 347.