Hexaeder [hɛksaˈeːdər], von griech. hexáedron, „Sechsflächner“, bezeichnet allgemein einen Polyeder mit sechs Begrenzungsflächen. Dabei handelt es sich im Allgemeinen nicht um einen regulären platonischen Vielflächner, sondern einen beliebigen von sechs ebenen Flächen begrenzten Polyeder. Im Speziellen, insbesondere im Zusammenhang mit platonischen Körpern, handelt es sich um das regelmäßige Hexaeder bzw. den Würfel mit den 6 kongruenten Flächen.

Graphentheoretische BetrachtungenBearbeiten

Unterscheidet man nach der Struktur (genauer: nach dem zugrundeliegenden Kantengraphen, so dass z. B. ein Parallelepiped und ein Pyramidenstumpf mit vierseitiger Grundfläche nicht von einem Würfel zu unterscheiden, dagegen all diese hingegen von einer Pyramide mit fünfeckiger Grundfläche), so gibt es nur sieben graphentheoretisch verschiedene Typen konvexer Hexaeder[1]:

Flächen: 4, 4, 4, 4, 4, 4
Kanten: 12,  Ecken: 8
Flächen: 5,  3, 3, 3, 3, 3
Kanten: 10,  Ecken: 6
Flächen: 5,  4, 4,  3, 3, 3
Kanten: 11,  Ecken: 7
Flächen: 5, 5,  4, 4,  3, 3
Kanten: 12,  Ecken: 8
Würfel, Quader, Parallelepiped, Rhomboeder, Trigonales Trapezo­eder, Pyramiden­stumpf mit vier­eckiger Grund- und Deckfläche Pyramide mit fünfeckiger Grundfläche
Flächen: 3, 3, 3, 3, 3, 3
Kanten: 9,  Ecken: 5
Flächen: 4, 4, 4, 4,  3, 3
Kanten: 11,  Ecken: 7
Flächen: 4, 4,  3, 3, 3, 3
Kanten: 10,  Ecken: 6
Doppeltetraeder Dieser Körper weist Chiralität auf:
Es gibt eine „linkshändige“ und eine „rechtshändige“ Variante,
die durch Ebenenspiegelung auseinander hervorgehen.

Betrachtet man auch nichtkonvexe Hexaeder, so kommen noch die folgenden drei Typen mit „Auskerbung“ dazu:

Flächen: 4, 4,  3, 3, 3, 3
Kanten: 10,  Ecken: 6
Flächen: 5, 5,  3, 3, 3, 3
Kanten: 11,  Ecken: 7
Flächen: 6, 6,  3, 3, 3, 3
Kanten: 12,  Ecken: 8

Würfel-TypBearbeiten

Vom Würfel-Typ (6 Flächen, 12 Kanten, 8 Ecken) gibt es folgende Formen:

Grafik              
Name Würfel Rectangular cuboid Trigonal trapezohedron Trigonal trapezohedron Quadrilateral Kegelstumpf Parallelepiped Rhombohedron
Flächen Quadrat three pairs of
rectangles
congruent rhombi congruent quadrilaterals apex-truncated
square pyramid
three pairs of
parallelograms
three pairs of
rhombi
Symmetrien Oh, [4,3], (*432)
order 48
(8 Spiegelungen,
3! Achspermutationen)
D2h, [2,2], (*222)
order 8
(8 Spiegelungen,
wenn alle Achsen unterschiedlich lang)
D3d, [2+,6], (2*3)
order 12
D3, [2,3]+, (223)
order 6
C4v, [4], (*44)
order 8
Ci, [2+,2+], (×)
order 2

Hexaeder in der ChemieBearbeiten

  • Eine organische Verbindung, die wie ein Würfel aufgebaut ist, ist das nach dem englischen Cube (englisch für Würfel) benannte Cuban.
  • Kubische Kristallsysteme kommen bei der Beschreibung des geometrischen Aufbaus von Kristallen vor, wie zum Beispiel beim Kochsalz (Natriumchlorid-Struktur).

Siehe auchBearbeiten

LiteraturBearbeiten

  • Beweis zur Existenz von genau sieben konvexen Hexaedern: Anatole Beck, Michael Bleicher, Donald Crowe: Excursions into Mathematics. 1969, S. 29–30.

WeblinksBearbeiten

Commons: Hexaeder – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Hexaeder – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten

  1. Martin Gardner: Denkspiele von anderen Planeten. Hugendubel, München 1986, ISBN 3-88034-295-4, S. 134.