Ein Rhomboeder ist ein Polyeder, das von 6 Rauten begrenzt ist. Es ist ein Parallelepiped mit gleich langen Kanten und 3 gleichen Innenwinkeln an zwei gegenüber liegenden Ecken.

FormelnBearbeiten

Größen eines Rhomboeders mit der Kantenlänge a und dem Innenwinkel  
Volumen    
Oberflächeninhalt  
Inkugelradius  
Höhe  
Raumdiagonalen[1]  
 
Flächendiagonalen  
 
Verhältnis von Inkugelvolumen zu Volumen  
Winkel zwischen

benachbarten Flächen

 
 
Raumwinkel in den Ecken  
 

VolumenBearbeiten

Das Volumen des Rhomboeders kann mithilfe der Formel für das Volumen des Parallelepipeds berechnet werden (siehe Parallelepiped - Volumen). Für das Rhomboeder sind alle Kanten gleich lang und die 3 Innenwinkel zwischen den Kanten gleich, also gilt   und  . Daraus ergibt sich das Volumen

 

FlächenwinkelBearbeiten

Für zwei gegenüber liegenden Ecken des Rhomboeders sind die 3 anliegenden Innenwinkel der rautenförmigen Seitenflächen gleich. Eine solche Ecke bildet zusammen mit den 3 benachbarten Ecken ein Tetraeder. Betrachtet man die Umkugel dieses Tetraeders, dann gilt nach dem Kosinussatz für Kugeldreiecke die Gleichung

 

Dabei sind   die Innenwinkel und   die Flächenwinkel zwischen diesen Seitenflächen.

Daraus folgt

 

Für die sechs anderen Ecken des Rhomboeders sind die anliegenden Innenwinkel gleich  ,   und  . Betrachtet man die Umkugel des entsprechenden Tetraeders, dann gilt nach dem Kosinussatz für Kugeldreiecke die Gleichung

 

Dabei sind   die Flächenwinkel zwischen den Seitenflächen mit den Innenwinkeln   und  .

Daraus folgt

 

Wegen   gilt  .[2][3]

RaumwinkelBearbeiten

Der Raumwinkel in der Ecke eines Polyeders kann mit dem Satz von L'Huilier berechnet werden.[4]

Für die zwei gegenüber liegenden Ecken des Rhomboeders mit den 3 gleichen Innenwinkeln   ergibt sich der Raumwinkel

 

weil in diesem Fall   ist.

Für die sechs anderen Ecken mit den anliegenden Innenwinkeln  ,   und   ergibt sich der Raumwinkel

 

wobei in diesem Fall   ist.

Raumfüllung mit RhomboedernBearbeiten

Der dreidimensionale euklidische Raum kann lückenlos mit kongruenten Rhomboedern ausgefüllt werden kann. Solche dreidimensionalen Parkettierungen werden Raumfüllung genannt.

Diese Raumfüllung aus Rhomboedern bildet ein Gitter. Es entspricht dem trigonalen Kristallsystem in der Kristallographie.

Dieses Gitter enthält parallele Ebenen. Deshalb ergeben die Flächenwinkel   und   zusammen 180°. Die im Gitter benachbarten Raumwinkel   und   entsprechen zusammen dem Flächenwinkel  . Der volle Flächenwinkel beträgt   und der volle Raumwinkel beträgt  . Daher gilt  .

Außerdem sind im Gitter 2 gleiche Raumwinkel   benachbart und entsprechen zusammen dem Flächenwinkel  . Daher gilt  .

AnwendungenBearbeiten

 
längliche und abgeflachte Rhomboeder
 
Melencolia I, Kupferstich (1514)

Kunst und NaturBearbeiten

KristallographieBearbeiten

Das Rhomboeder findet sich in der Natur als Kristallform und auf atomarer Ebene in Kristallstrukturen wieder. Es ist die allgemeine Flächenform der rhomboedrischen Kristallklasse (3), eine Grenzform der trigonal-trapezoedrischen (32) und eine spezielle Form der ditrigonal-skalenoedrischen Kristallklasse (3m). Außerdem ist es die Grundform des rhomboedrischen Bravais-Gitters. Das Rhomboeder als Kristallform gibt es nur im trigonalen Kristallsystem.

Zum Beispiel kristallisieren die Mineralien Amethyst, Hämatit, Calcit und Dolomit im trigonalen Kristallsystem.

Das Farben-RhomboederBearbeiten

Das Farben-Rhomboeder erfüllt nach Harald Küppers die geometrische Lösung für seine Farbenlehre. Jeder Punkt innerhalb des geometrischen Körpers entspricht einer Farbvalenz. Das heißt, jeder dieser Farbpunkte ist durch seine drei Vektoren-Potentiale definiert.[9] Durch Stauchung und Verzerrung lässt sich das Farben-Rhomboeder in einen RGB- oder einen CYM-Farbraum umwandeln, naturgemäß mit anderen Verhältnissen zwischen den Farbwerten.

Ein Rhomboeder, bei dem die kurze Diagonale der Außenflächen so lang wie die Kante des Rhomboeders ist, stellt ein symmetrisches Parallelepiped dar. Es stehen jeweils zwei Außenflächen einander parallel gegenüber. Jede rautenförmige Außenfläche besteht aus zwei gleichseitigen Dreiecken. Zerschneidet man ein Rhomboeder entlang der kurzen Diagonalen der Außenflächen, ergeben sich drei Teile: zwei Tetraeder und ein Oktaeder. Diese drei geometrischen Körper sind wiederum völlig symmetrisch. Sämtliche Außenflächen dieser drei neuen geometrischen Körper sind gleichseitige Dreiecke.

Siehe auchBearbeiten

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Stack Exchange: Formula for length of the diagonal of a parallelepiped
  2. Stack Exchange: Dihedral angles between tetrahedron faces from triangles' angles at the tip
  3. G. Richardson: The Trigonometry of the Tetrahedron. In: The Mathematical Gazette. 2, Nr. 32, 1. März 1902, S. 149–158. doi:10.2307/3603090.
  4. Wolfram MathWorld: Spherical Excess
  5. aus Augsburg Naturmuseum, gefunden Goslerwand, Osttirol
  6. Museo civico di storia naturale a Milano, Fundort Kasachstan
  7. Fundort China: rhombeoedrischer gelber transparenter Kristall: Calcite jaune
  8. Illustration aus Encyclopædia Britannica (1911), article CALCITE.
  9. Küppers' Farbenlehre (Memento vom 26. Januar 2012 im Internet Archive)
  10. W: weiß, S: schwarz, N: Neutralgrau, B→M→R→Y→G→C: sechs Buntfarben (blau, magenta, rot, gelb, grün, cyan)