Helmholtz-Gleichung

(Weitergeleitet von Helmholtzgleichung)

Die Helmholtz-Gleichung (nach Hermann von Helmholtz) ist eine partielle Differentialgleichung. Sie lautet:

in einem Gebiet mit geeigneten Randbedingungen auf dem Rand . Dabei ist

der Laplace-Operator in kartesischen Koordinaten.

Die Helmholtz-Gleichung ist dementsprechend eine partielle Differentialgleichung (PDGL) zweiter Ordnung aus der Klasse der elliptischen PDGL. Sie ergibt sich auch z. B. aus der Wellengleichung nach Trennung der Variablen und Annahme harmonischer Zeitabhängigkeit.

Setzt man , so erhält man die Laplace-Gleichung.

Beispiel: Partikuläre Lösung der inhomogenen MaxwellgleichungenBearbeiten

Eine Anwendung aus der Physik ist z. B. die Lösung der inhomogenen Maxwellgleichungen (Maxwellgleichungen mit Strömen und Ladungen). Aus diesen folgen in Gaußschen Einheiten mit der Lorenz-Eichung

 

die inhomogenen Wellengleichungen für das elektrische Skalarpotential   sowie für das magnetische Vektorpotential  :

 
 

(hier für die einzelnen Komponenten mit:  )

Exemplarisch wird nun die Lösung für   durchgeführt, die Herleitung für   geht analog.

Die allgemeine Lösung dieser Differentialgleichungen ist die Linearkombination der allgemeinen Lösung der dazugehörigen homogenen DGL sowie einer partikulären Lösung der inhomogenen DGL:

 

Die Lösung der homogenen DGL sind die elektromagnetischen Wellen; wir beschränken uns hier auf die Herleitung einer partikulären Lösung.

Um die Wellengleichung auf die Helmholtz-Gleichung zurückzuführen, betrachten wir die Fourier-Transformation von   und   bezüglich  :

 
 

Einsetzen in die Wellengleichung liefert:

 
 
 

Beide Integranden müssen gleich sein, da die Fourier-Transformation bijektiv ist:

 

Für die homogene Wellengleichung   erkennen wir mit   die Helmholtz-Gleichung wieder.

Zur Lösung der inhomogenen Gleichung   kann eine Greensche Funktion   verwendet werden, welche die Gleichung

 

erfüllt.

Diese lautet:

 

Physikalisch beschreibt diese Funktion eine Kugelwelle.

Damit erhalten wir für die gesamte Ladungsverteilung:

 

Dieses Ergebnis setzen wir in die Fourierdarstellung von   ein und erhalten

 

Mit   folgt:

 
 

Dies ist die gesuchte partikuläre Lösung der inhomogenen Gleichung. Für   folgt analog:

 
 

Die physikalische Bedeutung ist, dass das zur Zeit   am Ort   beobachtete Potential von Ladungen bzw. Strömen zur Zeit   am Ort   verursacht wurde.

Diskussion: Retardierte und avancierte LösungBearbeiten

Noch steht das Vorzeichen im Argument   nicht fest. Physikalisch scheint aber plausibel, dass die zeitliche Änderung einer Ladungsverteilung bei   erst zu einem späteren Zeitpunkt bei   beobachtet werden kann, da sich elektromagnetische Wellen mit der (konstanten) Lichtgeschwindigkeit   ausbreiten. Daher wählen wir das Minuszeichen als physikalisch praktikable Lösung:

 

Man nennt das Potential bei Wahl des Minuszeichens auch retardiertes Potential. Wählt man das Pluszeichen, so spricht man vom avancierten Potential.

Siehe auchBearbeiten

WeblinksBearbeiten