Hauptmenü öffnen
Physikalische Einheit
Einheitenname Mol
Einheitenzeichen
Physikalische Größe(n) Stoffmenge
Formelzeichen
Dimension
System Internationales Einheitensystem
In SI-Einheiten Basiseinheit
Benannt nach Molekül

Das Mol (Einheitenzeichen: mol) ist die SI-Einheit der Stoffmenge. Sie dient der Mengenangabe bei chemischen Reaktionen.

Seit dem 20. Mai 2019 lautet die Definition: Ein Mol eines Stoffes enthält genau Teilchen[1] (Avogadro-Konstante), also gut 602 Trilliarden Teilchen.

Teilchenzahl und Stoffmenge sind einander direkt proportional; jede dieser beiden Größen kann daher als Maß für die andere dienen.

DefinitionBearbeiten

Seit der Neudefinition des Internationalen Einheitensystems durch die 26. Generalkonferenz für Maß und Gewicht wird das Mol über die Avogadro-Konstante definiert. Die Avogadro-Konstante wurde dabei zu   festgelegt, ein Mol eines Stoffes enthält also genau   Teilchen. Die Teilchenart muss dabei angegeben werden, es kann sich um Atome, Moleküle, Ionen, Elektronen, Photonen oder andere Teilchen handeln.[2][3]

Alte Definition bis 19. Mai 2019Bearbeiten

Die SI-Basiseinheit Mol war definiert als die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 12 Gramm des Isotops Kohlenstoff-12 (12C) enthalten sind. 12 Gramm Kohlenstoff-12 entsprachen also genau der Stoffmenge 1 Mol. Ein Mol Atome natürlichen Kohlenstoffs hingegen hat aufgrund des Isotopengemischs eine Masse von 12,0107 Gramm.

Nach der alten Definition war die Zahl der Teilchen in einem Mol (die Avogadro-Konstante) eine Messgröße und mit einer Unsicherheit belastet. Nach der neuen, exakten Definition der Avogadro-Konstante ist die Teilchenzahl in einem Mol nunmehr exakt festgelegt, dafür hat ein Mol 12C nicht mehr exakt eine Masse von 12 Gramm.

Der nunmehr exakte Wert von NA wurde so gewählt, dass er möglichst gut mit dem Wert nach der alten Definition übereinstimmte (siehe: Avogadro-Konstante#Frühere Definition).

GeschichteBearbeiten

Der Begriff „Mol“ wurde 1893 von Wilhelm Ostwald geprägt und ist vermutlich von „Molekül“ abgeleitet. Im SI ist 1971 das Mol als Basiseinheit eingeführt worden. Damit wurde der Anwendungsbereich des SI auf die Chemie ausgedehnt. Vor Etablierung des SI ist das Mol überwiegend als Masseneinheit angesehen worden. Ältere Bezeichnungen sind Grammatom (nur bei Elementen) und Grammolekül (nur bei Verbindungen). So heißt es in DIN 1310 „Gehalt von Lösungen“ vom April 1927: „Als Masseneinheiten dienen […] das Mol, d. h. soviel Gramm des Stoffes, wie sein Molekulargewicht angibt […]“. Allerdings wurde durch die Anwendung des Molekular„gewichts“ hier eine Stoffmasse – keine Stoffmenge heutiger Sicht – beschrieben und als „Stoffmenge“ bezeichnet. In der heutigen Mol-Definition des SI hingegen wird die Stoffmenge von Teilchenzahl und Masse formal klar unterschieden.

Dezimale VielfacheBearbeiten

Gebräuchliche dezimale Teile und Vielfache des Mols sind:

Bezeichnung Einheit Faktor Vielfaches Anmerkung
Megamol Mmol 106-0 1000000 mol entspricht 1.000.000 Mol
Kilomol kmol 103-0 1000 mol entspricht 1000 Mol
Millimol mmol 10−3 0,001 mol entspricht einem Tausendstel Mol
Mikromol μmol 10−60 0,001 mmol entspricht einem Millionstel Mol (einem Tausendstel Millimol)
Nanomol nmol 10−90 0,001 μmol entspricht einem Milliardstel Mol (einem Millionstel Millimol)

Molares VolumenBearbeiten

Das molare Volumen eines Stoffes ist eine stoffspezifische Eigenschaft, die angibt, welches Volumen ein Mol eines Stoffes ausfüllt. Für ein ideales Gas gilt, dass ein Mol bei Normalbedingungen (273,15 K, 101325 Pa) ein Volumen von 22,414 Liter einnimmt. Für reale Gase, Feststoffe und Flüssigkeiten ist das molare Volumen dagegen stoffabhängig.

Molare MasseBearbeiten

Die molare Masse   ist der Quotient aus Masse und Stoffmenge eines Stoffs. In der Einheit g/mol hat sie denselben Zahlenwert wie die Atom- bzw. Molekülmasse des Stoffs in der Einheit   (atomare Masseneinheit). Ihre Bedeutung ist äquivalent zum früheren „Atomgewicht“ in der Chemie.

Berechnung von StoffmengenBearbeiten

Zur Berechnung wird folgende Formel verwendet:  

Dabei bezeichnet   die Stoffmenge,   die Masse und   die molare Masse.   kann für chemische Elemente Tabellenwerken entnommen und für chemische Verbindungen bekannter Zusammensetzung aus solchen Werten errechnet werden.

Die atomare Masse, die für jedes chemische Element in Tabellen angegeben wird, bezieht sich dabei auf das natürliche Isotopengemisch. So ist zum Beispiel als Atommasse für Kohlenstoff 12,0107 u angegeben. Dieser Wert ist zum Beispiel für in 13C angereichertes Material nicht anzuwenden. Während bei stabilen Elementen die Abweichungen von Isotopenmischungen, wie sie in der Natur vorkommen, relativ gering sind, kann insbesondere bei radioaktiven Elementen das Isotopengemisch stark von der Herkunft und dem Alter des Materials abhängen.

Verwendung der Einheit Mol bei KonzentrationsangabenBearbeiten

Die Einheit Mol findet häufig Verwendung in zusammengesetzten Einheiten zur Angabe von Konzentrationen (Salzgehalt von Lösungen, Säuregehalt von Lösungen usw.). Eine der häufigsten Verwendungen ist die x-molare Lösung (das x steht darin für eine beliebige rationale positive Zahl).

Beispiel:
Eine 2,5-molare A-Lösung enthält 2,5 mol des gelösten Stoffes A in 1 Liter der Lösung.
Siehe dazu auch: Stoffmengenkonzentration

BeispieleBearbeiten

Masse von 1 mol HeliumBearbeiten

  • 1 Atom Helium hat eine Masse von ungefähr 4 u (u ist die atomare Masseneinheit; ein Helium-Atom hat 2 Protonen und 2 Neutronen). Helium-Gas ist einatomar, daher bezieht sich im folgenden Beispiel das Mol auf He-Atome, ohne dass es einer besonderen Erwähnung bedarf.
  • 1 mol Helium hat also eine Masse von etwa 4 g und enthält ungefähr 6,022·1023 Helium-Atome.

Masse von 1 mol WasserBearbeiten

  • 1 mol eines Stoffes enthält ungefähr 6,022·1023 Teilchen.
  • 1 Wassermolekül H2O besteht aus 1 Sauerstoffatom und 2 Wasserstoffatomen.
  • Das Sauerstoffatom besitzt meistens 16 Nukleonen (Kernteilchen, also Neutronen und Protonen), ein Wasserstoffatom besitzt meistens 1 Kernteilchen (ein Proton).
  • Ein Wassermolekül enthält demnach meistens 18 Nukleonen.
  • Die Masse eines Kernteilchens ist ungefähr 1,6605·10−24 g.
  • 1 Wassermolekül hat somit meistens die Masse 18 · 1,6605·10−24 g.
  • Die Masse von 1 mol Wasser ist das 6,022·1023-Fache der Masse eines Wassermoleküls.
  • Die Masse von 1 mol Wasser ist somit 6,022·1023 · 18 · 1,6605·10−24 g = 18 g (der Zahlenwert ist gleich der Molekülmasse in u).

Nimmt man statt der Zahl der Nukleonen die genaueren Atommassen, ergibt sich ein leicht höherer Wert von 18,015 g.

Herstellung von Lithiumhydroxid aus Lithium und WasserBearbeiten

 

Bei der Bildung von LiOH werden zwei Wassermoleküle von zwei Lithiumatomen in jeweils einen H- und einen OH-Teil aufgespalten. Weil in jedem Mol von jeder Substanz gleich viele Teilchen vorhanden sind (siehe oben), braucht man beispielsweise 2 mol Lithium und 2 mol Wasser (oder eine beliebige andere Stoffmenge im 2:2-Verhältnis).

Beispielsweise reagieren 2-mal 6,94 g Lithium und 2-mal 18 g Wasser zu 2 g Wasserstoff und 47,88 g Lithiumhydroxid.

LiteraturBearbeiten

  • Beat Jeckelmann: Ein Meilenstein in der Weiterentwicklung des Internationalen Einheitensystems,METinfo, Vol 25, No2/2018.
  • Julian Haller, Karlheinz Banholzer, Reinhard Baumfalk: Neudefinition der Einheiten Kilogramm, Ampere, Kelvin und Mol. Wie kommt das Kilogramm in meine Laborwaage?, Chemie in unserer Zeit, (2019), 53, 84–90, doi:10.1002/ciuz.201800878.

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. General Conference on Weights and Measures (CGPM) – 26th meeting - Adopted Resolutions, abgerufen am 19. November 2018
  2. Übersetzt aus The International System of Units (SI brochure): 8th edition (PDF; 1,5 MB), 2006.
  3. 26th CGPM (2018) - Resolutions adopted / Résolutions adoptées. (PDF; 1,2 MB) Versailles 13–16 novembre 2018. In: bipm.org. Bureau International des Poids et Mesures, 19. November 2018, S. 2–5, abgerufen am 6. Mai 2019 (englisch, französisch).