Kugelflächenfunktionen

spezielle Funktion

Die Kugelflächenfunktionen sind ein vollständiger und orthonormaler Satz von Eigenfunktionen des Winkelanteils des Laplace-Operators. Dieser Winkelanteil zeigt sich, wenn der Laplace-Operator in Kugelkoordinaten geschrieben wird. Die Eigenwertgleichung lautet:

Darstellung des Betrags des Realanteils der ersten Kugelflächenfunktionen als Radius in kartesischen Koordinaten. Die Farben geben das Vorzeichen der Kugelflächenfunktion an (rot entspricht positiv, grün entspricht negativ).
Veranschaulichung des Realanteils einiger Kugelflächenfunktionen (um die z-Achse rotierend) auf der Einheitskugel. Dargestellt ist , wobei der Zeile und der Spalte entspricht. Zeilen und Spalten werden jeweils bei null beginnend durchnummeriert.

Die Eigenfunktionen sind die Kugelflächenfunktionen , dabei sind Normierungsfaktoren und die zugeordneten Legendrepolynome (Details siehe unten):

Besonders in der theoretischen Physik haben die Kugelflächenfunktionen eine große Bedeutung für die Lösung partieller Differentialgleichungen. Sie treten zum Beispiel bei der Berechnung von Atomorbitalen auf, da die beschreibende zeitunabhängige Schrödingergleichung den Laplace-Operator enthält und sich das Problem am besten in Kugelkoordinaten lösen lässt. Auch die in der Elektrostatik auftretenden Randwertprobleme können elegant durch die Entwicklung nach Kugelflächenfunktionen gelöst werden. In der Geophysik und Geodäsie werden die Kugelflächenfunktionen bei der Approximation des Geoids und des Magnetfeldes verwendet.

Zusammenhang mit dem Laplace-OperatorBearbeiten

Der Winkelanteil des Laplace-Operators zeigt sich, wenn dieser in Kugelkoordinaten geschrieben wird:

 

Der rechte, eingeklammerte Teil wird hier als Winkelanteil   bezeichnet. Er ist direkt proportional zum Quadrat des Drehimpulsoperators  .

Die Laplacesche Differentialgleichung in Kugelkoordinaten

 

hat neben der trivialen Lösung,  , verschiedenste Lösungen mit vielen technischen Anwendungen.

Zur Lösung wird folgender Produktansatz verwendet, wobei   nur vom Radius und   nur von Polar- und Azimutwinkel abhängt:

 

Dies ergibt eingesetzt:

 

Multiplikation von   und Division durch   liefert:

 

Diese Gleichung kann nur erfüllt werden, wenn in beiden Summanden unabhängig voneinander Radius und Winkel variierbar sind. Beide Summanden müssen somit denselben konstanten Wert annehmen, der zu   gewählt wird (diese Festlegung erweist sich später als sinnvoll):

 

Durch dieses Verfahren, welches Separationsansatz genannt wird, wurde also das ursprüngliche Problem, nämlich die Lösung der Laplace-Gleichung (partielle Differentialgleichung mit drei unabhängigen Variablen), auf das einfachere Problem der Lösung einer gewöhnlichen Differentialgleichung (Radialgleichung)

 

und einer partiellen Differentialgleichung mit zwei unabhängigen Variablen (winkelabhängige Gleichung), die gerade von den Kugelflächenfunktionen erfüllt wird, reduziert.

 

Nun lässt sich aufgrund der Orthogonalität und Vollständigkeit der Kugelflächenfunktionen zeigen, dass sich jede quadratintegrable Funktion aus diesen speziellen Funktionen als Summe zusammensetzen lässt:

 

Aufgrund der Linearität des Laplace-Operators lassen sich also durch Addition der Lösungen der Radialgleichung, multipliziert mit den Kugelflächenfunktionen, beliebig viele Lösungen der Laplace-Gleichung konstruieren. Damit ergibt sich automatisch eine Darstellung des Lösungsraumes der Laplace-Gleichung.

Die Kugelfunktionen wurden besonders von Legendre (Kugelfunktionen erster Art), Laplace (Kugelfunktionen zweiter Art) und Carl Gottfried Neumann (Kugelfunktionen mit mehreren Veränderlichen) behandelt.

Lösung der EigenwertgleichungBearbeiten

Die Eigenwertgleichung

 

wird mit folgendem Produktansatz separiert:

 

Umsortieren liefert:

 

Um beide Seiten getrennt voneinander variieren zu können, müssen beide Seiten den gleichen konstanten Wert annehmen. Diese Separationskonstante wird als   gewählt. Es ergeben sich zwei gewöhnliche Differentialgleichungen, die Polargleichung

 

und die Azimutalgleichung.

 

Die Azimutalgleichung wird durch   gelöst, wobei die   wegen der Zusatzbedingung der Eindeutigkeit auf der Kugeloberfläche   eingeschränkt sind auf ganze Zahlen  . Mit   erhält man die normierte Lösung der Azimutalgleichung:

 

Die Polargleichung kann mit einem Potenzreihenansatz gelöst werden. Die Lösungen sind nur dann endlich, eindeutig und stetig, wenn

 .

Dann sind die Lösungen die zugeordneten Legendrepolynome   und mit   erhält man die normierte Lösung der Polargleichung:

 

Die Gesamtlösung des Winkelanteils ist das Produkt aus den beiden erhaltenen Lösungen, nämlich die Kugelflächenfunktionen.

 

DarstellungBearbeiten

 
3D Plot der Kugelflächenfunktionen (hier   statt   und   statt  )   für Grad  

Die Darstellung der Kugelflächenfunktionen   ergibt sich als Lösung der oben genannten Eigenwertgleichung. Die konkrete Rechnung liefert:

 

Dabei sind

 

die zugeordneten Legendrepolynome und

 

sind Normierungsfaktoren. Mitunter ist die Berechnung über:

 

mit

 

vorteilhafter ( ), da  -faches Ableiten entfällt.

Eine andere Definition geht über homogene, harmonische Polynome. Diese sind durch ihren Wert auf der Sphäre eindeutig bestimmt. Jedes homogene harmonische Polynom vom Grad n lässt sich als Linearkombination von Kugelflächenfunktionen multipliziert mit   schreiben und umgekehrt. Wählt man beispielsweise die Funktion, die konstant 1 ist, als Basis des eindimensionalen Vektorraumes der 0-homogenen harmonischen Polynome und x, y und z als Basis des dreidimensionalen Vektorraumes der 1-homogenen, so erhält man in Kugelkoordinaten nach Division von   die Funktionen

 
 ,
 ,
 .

Für die homogenen Polynome vom Grad 2 erkennt man in der Liste unten schnell auch die Terme   wieder, nur mit einem falschen Vorfaktor.

EigenschaftenBearbeiten

 
Darstellung der Kugelflächenfunktionen

Die Kugelflächenfunktionen haben folgende Eigenschaften:

  • Orthonormalitätsrelation: (  ist das Kronecker-Delta)
 
 
  • Parität: Der Übergang   sieht in Kugelkoordinaten folgendermaßen aus:  . Unter dieser Transformation verhalten sich die Kugelflächenfunktionen wie folgt:
 
  • Komplexe Konjugation: Die jeweiligen   erhält man aus den   durch:
 

Entwicklung nach KugelflächenfunktionenBearbeiten

Die Kugelflächenfunktionen bilden ein vollständiges Funktionensystem. Daher können alle quadratintegrablen Funktionen   (mit   und   im Sinne der Kugelkoordinaten) nach den Kugelflächenfunktionen entwickelt werden:

 

Die Entwicklungskoeffizienten   berechnen sich zu:

 

Dabei ist   das komplex-konjugierte zu  . Die Darstellung einer Funktion   mit  - und  -Funktion als Fourierreihe ist ein Analogon zur Entwicklung einer zweidimensionalen Funktion   mit   auf einer Kugeloberfläche.

Additionstheorem Bearbeiten

Ein Resultat für die Kugelflächenfunktionen ist das Additionstheorem. Hierfür seien zwei Einheitsvektoren   und   durch Kugelkoordinaten   bzw.   dargestellt. Für den Winkel   zwischen diesen beiden Vektoren gilt dann

 

Das Additionstheorem für Kugelflächenfunktionen besagt nun

 

Das Theorem kann auch anstelle der Kugelflächenfunktionen   mit den zugeordneten Legendrefunktionen   geschrieben werden

 

Für   erhält man aus dem Additionstheorem

 

Dies kann als eine Verallgemeinerung der Identität   auf drei Dimensionen angesehen werden und ist als Unsöld-Theorem (nach Albrecht Unsöld) bekannt.[1]

Die ersten KugelflächenfunktionenBearbeiten

Die ersten Kugelflächenfunktionen
Ylm l = 0 l = 1 l = 2 l = 3
m = −3  
m = −2    
m = −1      
m = 0        
m = 1      
m = 2    
m = 3  

AnwendungenBearbeiten

QuantenmechanikBearbeiten

Als Eigenfunktionen des Winkelanteils des Laplaceoperators sind die Kugelflächenfunktionen zugleich Eigenfunktionen des Drehimpulsoperators zur Nebenquantenzahl   als Eigenwert. Daher spielen sie eine große Rolle bei der Beschreibung von Atomzuständen. Ferner ist

 
 

Lösung der Laplace-GleichungBearbeiten

Für jedes   ist die Funktion   Lösung der Laplace-Gleichung in drei Dimensionen, denn die Funktion   erfüllt gerade obige Gleichung

 .

Jede Lösung der Laplace-Gleichung lässt sich nun eindeutig als

 

darstellen. Somit lässt sich mit den Kugelflächenfunktionen die Laplace-Gleichung mit sphärischen Dirichlet-Randbedingungen lösen: Legen die Randbedingungen den Wert der Lösung  , die auf der abgeschlossenen Einheitskugel definiert sein soll, auf eine bestimmte quadratintegrable Funktion   auf der Einheitssphäre fest, so lässt sich   nach Kugelflächenfunktionen entwickeln, wodurch sich die Koeffizienten   und damit auf eindeutige Weise ganz   ergeben. Auf Grundlage dieser Erkenntnis der Lösbarkeit mit sphärischen Randbedingungen lässt sich die allgemeine Lösbarkeit des Dirichlet-Problems der Laplace-Gleichung für hinreichend glatte Randbedingungen zeigen, dieser Beweis geht auf Oskar Perron zurück.[2] Das Dirichlet-Problem findet Anwendung in der Elektrostatik und Magnetostatik. Zum Lösen der Laplace-Gleichung, bei der eine Funktion gesucht ist, die außerhalb einer Kugel definiert ist und im Unendlichen verschwindet, zu gegebenen Randbedingungen, ist der Ansatz einer Zerlegung

 

möglich, der ebenfalls stets eine Lösung der Laplace-Gleichung zu den gegebenen Randbedingungen liefert.

Nomenklatur in der GeophysikBearbeiten

Kugelflächenfunktionen werden auch in der Geophysik verwendet. Man unterscheidet hier zwischen:

  • zonal ( ): unabhängig von Längengrad  
  • sektoriell ( ):
 
  • tesseral (sonst): längen- und breitengradabhängig

LiteraturBearbeiten

Kugelflächenfunktionen werden auch in vielen Lehrbüchern der Theoretischen Physik behandelt, z. B.:

  • Arnold Sommerfeld: Vorlesungen über Theoretische Physik, Band 6 Partielle Differentialgleichungen der Physik. Harri Deutsch, 1992
  • Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë: Quantenmechanik 1. 2. Auflage, Walter de Gruyter, Berlin / New York 1999, S. 649 ff.
  • Torsten Fließbach: Elektrodynamik. 4. Auflage, Spektrum, München 2005, S. 99 ff.

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Albrecht Unsöld: Beiträge zur Quantenmechanik der Atome. In: Annalen der Physik. Band 387, Nr. 3, 1927, S. 376–377, doi:10.1002/andp.19273870304.
  2. Oskar Perron: Eine neue Behandlung der ersten Randwertaufgabe für Δu=0. In: Mathematische Zeitschrift. Band 18, Nr. 1. Springer, 1923, ISSN 0025-5874, S. 42–54, doi:10.1007/BF01192395.