Fermat-Zahl

Reihe von Zahlen aus der Primzahltheorie

Eine Fermat-Zahl, benannt nach dem französischen Mathematiker Pierre de Fermat, ist eine Zahl der Form

mit einer ganzen Zahl . Die ersten Fermat-Zahlen lauten 3, 5 und 17.

Im August 1640 vermutete Fermat fälschlicherweise, dass alle Zahlen dieser Form (die später nach ihm benannt wurden) Primzahlen seien.[1] Dies wurde jedoch 1732 von Leonhard Euler widerlegt, der zeigte, dass schon die sechste Fermatzahl F5 durch 641 teilbar ist.[2] Man kennt außer den ersten fünf (3, 5, 17, 257, 65537) derzeit keine weitere Fermat-Zahl, die gleichzeitig Primzahl ist, und vermutet, dass es außer diesen fünf Zahlen auch keine weitere gibt (siehe Abschnitt weiter unten).

Fermat-Zahlen Bearbeiten

Die ersten Fermat-Zahlen lauten   und  .[3]

Eine etwas längere Liste bis   findet man in der folgenden aufklappbaren Box.

Wegen   hat die Fermatzahl   doppelt so viele oder um eine weniger als doppelt so viele Stellen wie ihr Vorgänger  .

Fermatsche Primzahlen Bearbeiten

Die Idee hinter Fermatschen Primzahlen ist der Satz, dass   nur für   und für   mit   prim sein kann:

 

Die Umkehrung dieses Satzes, dass also nicht nur (wegen   offensichtlich)  , sondern auch jede Fermat-Zahl   prim sei, ist falsch.   bis   sind sogar die einzigen bisher bekannten Fermatschen Primzahlen:

Schon Fermat zeigte, dass diese ersten fünf Fermat-Zahlen Primzahlen sind, und vermutete 1640, dass dies auf alle Fermat-Zahlen zutreffe. Diese Vermutung wurde aber schon 1732 von Leonhard Euler einfach widerlegt, indem er mit 641 einen echten Teiler von F5 = 4.294.967.297 fand.[4]

Man vermutet inzwischen, dass außer den ersten fünf keine weiteren Fermatschen Primzahlen existieren. Diese Vermutung beruht auf statistischen Abschätzungen: Der Primzahlsatz besagt, dass die Anzahl der Primzahlen, die nicht größer als x sind, näherungsweise gleich x / ln x ist. Die Primzahldichte oder Wahrscheinlichkeit dafür, dass Fn als ungerade Zahl eine Primzahl ist, beträgt daher näherungsweise 2 / ln Fn ≈ 3/2n. Die Wahrscheinlichkeit, dass die Fermatzahl Fn oder eine der folgenden Fermatzahlen eine Primzahl ist, ergibt sich durch Summation der geometrische Reihe ungefähr zu 6/2n.

Für verbliebene weder teilweise noch vollständig faktorisierte Fermat-Zahlen ist diese Wahrscheinlichkeit mit etwa 6 · 10−10 mittlerweile aber sehr klein geworden.

Faktorisierungsergebnisse von Fermat-Zahlen Bearbeiten

Die Zahlen F0 bis F4 sind, wie schon Fermat erkannt hat, Primzahlen:

n Fermat-Primzahl Fn
00 3
01 5
02 17
03 257
04 65537

Die Zahlen F5 bis F11 sind entgegen der Vermutung Fermats zusammengesetzt. Sie sind bereits vollständig faktorisiert:[5]

Ab F12 ist keine Fermat-Zahl mehr vollständig faktorisiert. Die ersten acht lauten:

Von F12 bis F32 und von einigen größeren Fermat-Zahlen ist bekannt, dass sie zusammengesetzt sind – hauptsächlich, weil ein oder mehrere Faktoren gefunden wurden. Von zwei Fermat-Zahlen (F20 und F24) kennt man zwar keinen Faktor, hat aber auf andere Art gezeigt, dass sie zusammengesetzt sind.[7][8]

Für F14 wurde am 3. Februar 2010 ein Faktor veröffentlicht,[9] für F22 am 25. März 2010.[10]

Die kleinste Fermat-Zahl, von der bislang nicht bekannt ist, ob sie prim oder zusammengesetzt ist, ist F33. Diese Zahl hat 2.585.827.973 Stellen. Insgesamt weiß man von den ersten 50 Fermat-Zahlen nur von 10 nicht, ob sie zusammengesetzt sind oder nicht.[11]

F18.233.954 ist die größte Fermat-Zahl, von der ein Faktor bekannt ist, nämlich die Primzahl 7 · 218.233.956 + 1. Dieser Faktor wurde am 5. Oktober 2020 von Ryan Propper mit Computer-Programmen von Geoffrey Reynolds, Jean Penné und Jim Fougeron entdeckt und hat 5.488.969 Stellen. Die Fermat-Zahl F18.233.954 selbst hat allerdings mehr als 105.488.966 Stellen.[12]

Insgesamt weiß man von 324 Fermat-Zahlen, dass sie zusammengesetzt sind. 368 Primfaktoren sind bisher bekannt (Stand: 30. Juli 2023).[5][13]

Der folgenden Tabelle kann man entnehmen, in welchem Intervall wie viele zusammengesetzte Fermat-Zahlen bekannt sind (Stand: 30. Juli 2023):

nachweislich keine Primzahl
n bekannt
zusammengesetzt
Anteil
05 ≤ n ≤ 32 028 100,0 %
033 ≤ n ≤ 100 032 047,1 %
101 ≤ n ≤ 500 064 016,0 %
0501 ≤ n ≤ 1000 022 004,4 %
1001 ≤ n ≤ 5000 053 001,3 %
05001 ≤ n ≤ 10000 027 000,5 %
TOTAL 226 002,3 %
nachweislich keine Primzahl
n bekannt
zusammengesetzt
Anteil
10001 ≤ n ≤ 50000 38 0,09500 %
050001 ≤ n ≤ 100000 11 0,02200 %
100001 ≤ n ≤ 500000 26 0,00650 %
0500001 ≤ n ≤ 1000000 07 0,00140 %
1000001 ≤ n ≤ 5000000 13 0,00033 %
05000001 ≤ n ≤ 20000000 03 0,00006 %
TOTAL 98 0,00049 %

Die kleinsten 25 Fermat-Primfaktoren sind die folgenden:

3, 5, 17, 257, 641, 65.537, 114.689, 274.177, 319.489, 974.849, 2.424.833, 6.700.417, 13.631.489, 26.017.793, 45.592.577, 63.766.529, 167.772.161, 825.753.601, 1.214.251.009, 6.487.031.809, 70.525.124.609, 190.274.191.361, 646.730.219.521, 2.710.954.639.361, 2.748.779.069.441, … (Folge A023394 in OEIS)

Um von einer Fermat-Zahl nachzuweisen, dass sie zusammengesetzt ist, benutzt man in der Regel den Pépin-Test und den Suyama-Test, die beide besonders auf diese Zahlen zugeschnitten und sehr schnell sind.

Die folgenden 16 Primfaktoren von Fermat-Zahlen wurden vor 1950 entdeckt.

Seit 1950 wurden alle weiteren Faktoren durch Einsatz von Computern gefunden.[14]

Eigenschaften Bearbeiten

  • Für   hat jeder Teiler von   die Form   (bewiesen von Euler und Lucas, siehe auch Artikel Quadratisches Reziprozitätsgesetz, Unterabschnitt Teiler von Fermat- und Mersenne-Zahlen).
Beispiele:
Der Teiler 641 von F5: 641 = 5 · 27 + 1 = 5 · 128 + 1
Der Teiler 6700417 von F5: 6700417 = 52347 · 27 + 1 = 52347 · 128 + 1
  • Fermat-Zahlen lassen sich auf folgende Arten rekursiv berechnen:
  •    für   
  •    für   
  •    für   
  •    für   
  • Es gelten folgende Darstellungen von  :
  • Jede Fermat-Zahl   mit   ist von der Form  , wobei   positiv ganzzahlig ist. (mit anderen Worten:  )[15]
  • Jede Fermat-Zahl   mit   ist von der Form  , wobei   positiv ganzzahlig ist. (mit anderen Worten:  )
  • Jede Fermat-Zahl   mit   ist von der Form  , wobei   positiv ganzzahlig ist. (mit anderen Worten:  )
  • Jede Fermat-Zahl   mit   ist von der Form  , wobei   positiv ganzzahlig ist. (mit anderen Worten:  )
Anders formuliert: Mit Ausnahme von   und   endet jede Fermat-Zahl im Dezimalsystem mit der Ziffer 7. Die letzten beiden Ziffern sind 17, 37, 57 oder 97.[16]
  • Sei   die  -te Fermat-Zahl. Dann gilt:
  •   hat unendlich viele Darstellungen der Form   mit   positiv ganzzahlig, für alle  [17]
  •   hat mindestens eine Darstellung der Form   mit   positiv ganzzahlig. Ist   zusammengesetzt, gibt es mehrere Möglichkeiten dieser Darstellung.[18]
  •   kann niemals als Summe von zwei Primzahlen dargestellt werden, für alle  [19]
  für alle  
  •   kann niemals als Differenz von zwei p-ten Potenzen geschrieben werden, wenn   und p ungerade Primzahlen sind:[20]
  für alle  
  • Sei   die  -te Fermat-Zahl und sei   die Anzahl der Stellen von  . Dann gilt:[21]
 
wobei mit   die Floor-Funktion gemeint ist (also die größte ganze Zahl, die kleiner oder gleich   ist)
  • Sei   die  -te Fermat-Zahl mit  . Dann gilt:
  ist eine Primzahl genau dann, wenn gilt:  
Mit anderen Worten: Für   gilt:
 
Dieser Satz nennt sich Pépin-Test.
  • Für   gilt:[22]
 
  • Sei  ,   und   prim. Dann gilt:[22]
 
  • Sei   eine Primzahl und   eine ganze Zahl. Dann gilt für jede prime Fermat-Zahl   mit  :[23]
  teilt  
  • Sei  . Dann gilt:[24]
  für alle  
  • Sei   eine Primzahl. Dann gilt:[25][26]
  •   mit einer positiven ganzen Zahl  
  •  
Beispiele:
Für   erhält man  
Für   erhält man  
Für   erhält man   (eine 20-stellige Zahl)
Für   erhält man   (eine 617-stellige Zahl)
Für   erhält man   (eine 315653-stellige Zahl)
Auch für   (eine 41373247568-stellige Zahl) und   (die Anzahl der Stellen dieser Zahl hat 620 Stellen) erhält man keine Primzahlen. Für alle anderen   ist noch nicht bekannt, ob es sich um Primzahlen handelt oder nicht.
Könnte man zeigen, dass es keine weiteren Primzahlen der Form   gibt, so wäre gleichzeitig auch bewiesen, dass es unendlich viele zusammengesetzte Fermat-Zahlen gibt.
  • Sei   eine Primzahl. Dann gilt:[26]
  •   mit einer positiven ganzen Zahl  
  •  
  • Zwei Fermat-Zahlen sind gleich oder teilerfremd, wie aus der letzten Aussage folgt (Goldbachs Theorem, nach Christian Goldbach, 1730). Daraus lässt sich folgern, dass es unendlich viele Primzahlen gibt (siehe auch Beweisarchiv).
  (Folge A051158 in OEIS)
Sei   die Menge aller Primzahlen, die irgendeine Fermat-Zahl   teilen. Dann gilt:
  ist konvergent.
  • Sei   der größte Primteiler der Fermat-Zahl  . Dann gilt:[31]
 
für alle    (bewiesen von Aleksander Grytczuk, Florian Luca und Marek Wójtowicz im Jahr 2001).
 
für mindestens ein   (im Speziellen für  ).
 
  • Jede zusammengesetzte Fermat-Zahl   ist eine fermatsche Pseudoprimzahl zur Basis 2. Das heißt, für alle Fermat-Zahlen gilt:
 
  • Eine prime Fermat-Zahl   ist niemals eine Wieferich-Primzahl.[33] Das heißt, für alle primen Fermat-Zahlen gilt:
 
  • Ein Produkt
 
von Fermat-Zahlen mit   ist eine fermatsche Pseudoprimzahl zur Basis 2 genau dann, wenn   (bewiesen von Michele Cipolla im Jahr 1904).[34]
  • Jede Fermat-Zahl   hat im Binärsystem die Form
 
mit   Nullen zwischen den beiden Einsen am Anfang und Ende.[35]
Jede Fermat-Zahl ab   hat im Hexadezimalsystem die Form
 
mit   Nullen zwischen den beiden Einsen am Anfang und Ende.

Ungelöste Probleme Bearbeiten

  • Ist Fn eine zusammengesetzte Zahl für alle n ≥ 5?
  • Gibt es unendlich viele zusammengesetzte Fermatsche Zahlen? (Diese Behauptung ist etwas schwächer als die vorherige.)
  • Gibt es unendlich viele Fermatsche Primzahlen? (Diese Behauptung steht nicht im Widerspruch zur vorherigen; es könnten beide Behauptungen gelten. Es ist allerdings äußerst unwahrscheinlich, wie der untere Abschnitt zeigt.)
  • Gibt es Fermatsche Zahlen, die nicht quadratfrei sind?

Warum es wahrscheinlich keine weiteren Fermat-Primzahlen gibt Bearbeiten

Man kann heuristisch annehmen, dass   die letzte (und somit auch die größte) Fermat-Primzahl ist. Die Überlegungen dafür sind die folgenden:

Der Primzahlsatz gibt an, dass eine zufällige ganze Zahl in einem geeigneten Intervall um   mit einer Wahrscheinlichkeit von etwa   eine Primzahl ist. Wenn man nun heuristisch davon ausgeht, dass diese Aussage auch für Fermat-Primzahlen gilt, gepaart mit der Tatsache, dass die Fermat-Zahlen   alle zusammengesetzt sind, kommt man für größere Fermat-Primzahlen zu folgendem Ergebnis:[36]

Die Wahrscheinlichkeit, dass   eine Fermat-Primzahl ist, beträgt höchstens  .

Für eine neue, noch unbekannte Fermat-Primzahl   muss   sein. Somit beträgt die erwartete Anzahl an neuen, noch unbekannten Fermat-Primzahlen höchstens

 

Die Wahrscheinlichkeit, dass es noch eine weitere Fermat-Primzahl   gibt, beträgt also weniger als 1 zu einer Milliarde, weswegen man davon ausgehen kann, dass es wahrscheinlich keine weiteren gibt.

Geometrische Anwendung der Fermatschen Primzahlen Bearbeiten

 
Anzahl der Seiten bekannter konstruierbarer Polygone.
Rot: Seitenzahlen der 31 bekannten regulären Polygone mit ungerader Seitenzahl (Lesart von oben nach unten: Gleichseitiges Dreieck – regelmäßiges Fünfeck – regelmäßiges Fünfzehneck - … – 4294967295-Eck)
Schwarz: Seitenzahlen der (unendlich vielen) bekannten Polygone mit gerader Seitenzahl

Carl Friedrich Gauß zeigte (in seinem Lehrbuch Disquisitiones Arithmeticae), dass es einen Zusammenhang zwischen der Konstruktion von regelmäßigen Polygonen und den Fermatschen Primzahlen gibt:

Ein regelmäßiges Polygon mit n Seiten kann dann und nur dann mit Zirkel und Lineal konstruiert werden, wenn n
  • eine Potenz von 2 oder
  • eine Potenz von 2 multipliziert mit paarweise verschiedenen Fermatschen Primzahlen ist.[37]

Mit anderen Worten:

Ein  -seitiges regelmäßiges Polygon kann mit Zirkel und Lineal konstruiert werden 
   mit   und paarweise verschiedenen Fermatschen Primzahlen  

Konkret zeigte Gauß die Konstruierbarkeit des regelmäßigen Siebzehnecks.

Die nach der obigen Formel konstruierbaren regelmäßigen Polygone lassen sich in zwei Gruppen unterteilen: solche mit ungerader Seitenzahl und solche mit gerader Seitenzahl. Alle Polygone, in denen   ist, sind offensichtlich solche mit gerader Seitenzahl (durch 2 teilbar). Alle Polygone mit   sind solche mit ungerader Seitenzahl (ein Produkt von Primzahlen größer als 2 ist immer eine ungerade Zahl). Da nur endlich viele Fermatsche Primzahlen bekannt sind, ist auch die Anzahl der bekannten, mit Zirkel und Lineal konstruierbaren, regulären Polygone mit ungerader Seitenzahl begrenzt. Unter diesen ist das 4294967295-Eck ( ) dasjenige mit der größten Eckenzahl.

Verallgemeinerte Fermatsche Zahlen Bearbeiten

Eine Zahl der Form   mit zwei teilerfremden natürlichen Zahlen a > 0 und b > 0 heißt verallgemeinerte Fermatsche Zahl. Ist eine solche Zahl prim, dann heißt sie verallgemeinerte Fermatsche Primzahl.

Insgesamt sind schon über 11719 Faktoren von verallgemeinerten zusammengesetzten Fermat-Zahlen bekannt (Stand: 13. August 2018).[38][39] Davon wurden alleine über 5100 von Anders Björn und Hans Riesel vor 1998 entdeckt.

Ist a = 1, so werden die so erhaltenen verallgemeinerten Fermatschen Zahlen üblicherweise mit

 

bezeichnet. Die Zahl b nennt man Basis.

Ist a = 1 und b = 2, so handelt es sich um die schon weiter oben erwähnten Fermat-Zahlen

 .

Es folgt eine Auflistung der ersten verallgemeinerten Fermatschen Primzahlen der Form  . Die beiden Basen   und   müssen, damit   prim sein kann, teilerfremd sein. Außerdem ist es auch notwendig, dass man   durch den größten gemeinsamen Teiler   dividiert, da die Zahl   bei ungeradem   und   immer eine gerade Zahl wäre und somit niemals eine Primzahl sein könnte. Weiters kann man ohne Einschränkung annehmen, dass   sein muss, da man bei   das   bedenkenlos mit   vertauschen kann und somit zum Beispiel   ist. Der Fall   führt niemals zu Primzahlen, da dann   wäre und sicher nicht prim ist (es wären in diesem Fall auch die beiden Basen   und   nicht wie vorausgesetzt teilerfremd).

Fast alle verallgemeinerten Fermatschen Zahlen sind wahrscheinlich zusammengesetzt. Bewiesen ist diese Aussage aber nicht, denn schon für   und   (das sind die ursprünglichen Fermat-Zahlen) wurde weiter oben im K