Vollständige algebraische Varietät

Klasse von algebraischen Varietäten

Eine vollständige algebraische Varietät ist in der algebraischen Geometrie das Analogon zu einer kompakten Mannigfaltigkeit in der Differentialgeometrie. Eine algebraische Varietät ist also vollständig, wenn sie gewisse „kompakte“ Eigenschaften hat.

Definition Bearbeiten

Sei   eine algebraische Varietät, sodass für alle Varietäten   die Projektion   bezüglich der Zariski-Topologie eine abgeschlossene Abbildung ist, das heißt für eine Zariski-abgeschlossene Teilmenge   ist auch   abgeschlossen. Dann heißt   vollständig.[1][2]

Beispiele Bearbeiten

Das wichtigste Beispiel vollständiger Varietäten sind projektive Varietäten.[3][4] Affine Varietäten sind hingegen nur dann vollständig, wenn sie endlich sind.[5][6] Mit größerem Aufwand lassen sich auch Beispiele von nicht projektiven vollständigen Varietäten konstruieren. Beispiele sind etwa singuläre nicht-projektive vollständige Flächen[7][8] oder glatte vollständige nicht-projektive dreidimensionale Varietäten.[9][10][11]

Vererbung der Vollständigkeit Bearbeiten

Die Eigenschaft der Vollständigkeit bleibt unter gewissen Konstruktionen erhalten. So gilt etwa:

  • Abgeschlossene Untervarietäten vollständiger Varietäten sind vollständig.
  • Vollständige Untervarietäten von Varietäten sind abgeschlossen.
  • Produkte vollständiger Varietäten sind vollständig.
  • Bilder von vollständigen Varietäten unter Morphismen sind abgeschlossen und vollständig.[12][13]

Eigenschaften vollständiger Varietäten Bearbeiten

Reguläre Funktionen vollständiger Varietäten Bearbeiten

Die regulären Funktionen zusammenhängender vollständiger Varietäten sind gerade die konstanten Funktionen.[14]

Vollständigkeit erzwingt teilweise Projektivität Bearbeiten

Vollständige quasiprojektive Varietäten, vollständige Kurven und glatte vollständige Flächen sind projektive Varietäten.[15][16][17]

Satz von Nagata Bearbeiten

Auf Masayoshi Nagata geht das folgende Einbettungsresultat zurück:

Jede Varietät kann als offene Teilmenge dicht in eine vollständige Varietät eingebettet werden.[18][19]

Borelscher Fixpunktsatz Bearbeiten

Für die Theorie algebraischer Gruppen ist der folgende Fixpunktsatz relevant:

Operiert eine zusammenhängende auflösbare algebraische Gruppe auf einer vollständigen nichtleeren Varietät über einem algebraisch abgeschlossenen Körper, so existiert ein Fixpunkt.[20][21]

Ähnliche Begriffe Bearbeiten

Zusammenhang mit Kompaktheit Bearbeiten

Mit der folgenden Charakterisierung der Kompaktheit eines Hausdorffraums wird der Zusammenhang zur Vollständigkeit einer algebraischen Varietät deutlich:

Ein Hausdorffraum   ist genau dann kompakt, wenn für alle topologischen Räume   die Projektion   bezüglich der Produkttopologie auf   eine abgeschlossene Abbildung ist.[22]

Zusammenhang mit eigentlichen Morphismen Bearbeiten

Die den vollständigen Varietäten entsprechenden Morphismen sind die eigentlichen Morphismen.[23] Daher werden vollständige Varietäten zum Teil auch als eigentliche Varietäten bezeichnet.[24] So ist jeder Morphismus, der auf einer vollständigen Varietät definiert ist, ein eigentlicher Morphismus und eine Varietät ist gerade dann vollständig, wenn der konstante Morphismus von der Varietät auf einen Punkt ein eigentlicher Morphismus ist.[25]

Literatur Bearbeiten

Einzelnachweise Bearbeiten

  1. Fieseler, Kaup: Algebraische Geometrie. 2005, 5.14 Definition
  2. Humphreys: Linear Algebraic Groups. 1975, 6.1
  3. Fieseler, Kaup: Algebraische Geometrie. 2005, 5.25 Korollar
  4. Humphreys: Linear Algebraic Groups. 1975, 6.2 Theorem
  5. Fieseler, Kaup: Algebraische Geometrie. 2005, 5.19 Korollar
  6. Humphreys: Linear Algebraic Groups. 1975, 6.1 Proposition, (e)
  7. Masayoshi Nagata: On the imbeddings of abstract surfaces in projective varieties. Mem. College Sci. Univ. Kyoto Ser. A Math. 30 (1957), no. 3, 231--235.
  8. Hartshorne: Algebraic Geometry. 1977, Ex. II.7.13, Ex. III.5.9
  9. Heisuke Hironaka: On the theory of birational blowing-up. Harvard 1960.
  10. Masayoshi Nagata: Existence theorems for nonprojective complete algebraic varieties. Illinois J. Math. 2 (1958) 490–498.
  11. Hartshorne: Algebraic Geometry. 1977, Appendix B, Example 3.4.1
  12. Fieseler, Kaup: Algebraische Geometrie. 2005, 5.17 Lemma
  13. Humphreys: Linear Algebraic Groups. 1975, 6.1 Proposition
  14. Fieseler, Kaup: Algebraische Geometrie. 2005, 5.19 Korollar, 1)
  15. Humphreys: Linear Algebraic Groups. 1975, 6.1 Proposition (f)
  16. Hartshorne: Algebraic Geometry. 1977, Ex. III.5.8
  17. Oscar Zariski: Introduction to the Problem of Minimal Models in the Theory of Algebraic Surfaces. American Journal of Mathematics Vol. 80, No. 1 (Jan., 1958), 146-184
  18. Masayoshi Nagata: Imbedding of an abstract variety in a complete variety. Journal of Mathematics of Kyoto University (2) 1962, 1-10.
  19. Masayoshi Nagata: A generalization of the imbedding problem of an abstract variety in a complete variety. Journal of Mathematics of Kyoto University (3) 1963, 89-102.
  20. Humphreys: Linear Algebraic Groups. 1975, 21.2 Fixed Point Theorem
  21. Armand Borel: Groupes Lineaires Algebriques. Annals of Mathematics, Second Series, Vol. 64, No. 1 (Jul., 1956), 20-82
  22. Nicolas Bourbaki: General Topology I. 10.2, Corollary 1 zu Theorem 1
  23. Fieseler, Kaup: Algebraische Geometrie. 2005, 13 Einleitung
  24. Hartshorne: Algebraic Geometry. 1977, S. 105 Definition
  25. Fieseler, Kaup: Algebraische Geometrie. 2005, 13.4 Bemerkung