Ein Spinorbündel – auch Spinbündel[1] genannt – ist ein mathematisches Objekt aus der Differentialgeometrie beziehungsweise der globalen Analysis. Es ist eine spezielle Art eines Vektorbündels über einer Mannigfaltigkeit. Spinorbündel können nur für Spin-Mannigfaltigkeiten definiert werden. Dies sind spezielle riemannsche Mannigfaltigkeiten mit einer Spinstruktur auf dem Tangentialbündel. Ob ein Tangentialbündel mit einer Spinstruktur ausgestattet werden kann, kann durch die zweite Stiefel-Whitney-Klasse gemessen werden.

Der Raum der glatten Schnitte eines Spinorbündels wird auch als Raum der Spinoren oder Spinorfelder bezeichnet und dient als eine natürliche Definitionsmenge für den Dirac-Operator.

Das mathematische Teilgebiet, das sich mit Spinorbündeln und Spin-Mannigfaltigkeiten sowie mit verwandten Themen, wie zum Beispiel Dirac-Operatoren und deren Indextheorie beschäftigt, wird als Spin-Geometrie bezeichnet.[2]

Spinstruktur Bearbeiten

Sei   eine riemannsche Mannigfaltigkeit und   ein orientiertes hermitesches Vektorbündel der Dimension  . Mit   wird die Spin-Gruppe von   bezeichnet. Sie kann als eine zweiblättrige Überlagerung   der orthogonalen Gruppe   aufgefasst werden. Eine Spinstruktur auf   ist ein  -Hauptfaserbündel   zusammen mit einer zweiblättrigen Überlagerung

 

des  -Hauptfaserbündels  , so dass   für alle   und alle   gilt.[3]

Spin-Mannigfaltigkeit Bearbeiten

Eine Spin-Mannigfaltigkeit ist eine orientierbare riemannsche Mannigfaltigkeit, die eine Spinstruktur auf ihrem Tangentialbündel erlaubt.[4]

Da die Stiefel-Whitney-Klasse einer Mannigfaltigkeit definiert ist als die Stiefel-Whitney-Klasse ihres Tangentialbündels ist, bedeutet das, dass eine orientierbare riemannsche Mannigfaltigkeit genau dann eine Spinstruktur zulässt, wenn   gilt. Dann werden die verschiedenen Spinstrukturen von den Elementen von   bestimmt.[5]

Definition des Spinorbündels Bearbeiten

Sei   eine riemannsche Mannigfaltigkeit mit gerader Dimension und einer Spinstruktur   auf dem Tangentialbündel  , also kurz eine Spin-Mannigfaltigkeit mit gerader Dimension. Sei   die Darstellung der komplexen Clifford-Algebra   (auch Spinor-Modul genannt). Die  -Gruppe hat als Teilmenge von   ebenfalls eine Darstellung  .

Das Spinorbündel   über der Mannigfaltigkeit   ist definiert als das assoziierte komplexe Vektorbündel[6]

 

Hierbei bezeichnet   das Faserprodukt von   mit   über  . In diesem konkreten Fall bedeutet dies

 

für  ,   und  .

Literatur Bearbeiten

  • Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0.

Einzelnachweise Bearbeiten

  1. Thomas Friedrich: Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie. Friedr. Vieweg & Sohn, Braunschweig, 1997. ISBN 3-528-06926-0, S. 467–468.
  2. spin geometry. In: nlab. Abgerufen am 31. März 2021 (englisch).
  3. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 80.
  4. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 96.
  5. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 96–97.
  6. Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften 298). Berlin u. a. Springer 1992, ISBN 0-387-53340-0, S. 111.