Elektromagnetisches Einheitensystem

physikalisches Einheitensystem

Das elektromagnetische Einheitensystem (emE, englisch EMU für electromagnetic units) ist ein physikalisches Einheitensystem, das auf dem CGS-System der Mechanik aufbaut und dieses um elektromagnetische Einheiten ergänzt. Das Gaußsche Einheitensystem basiert in Teilen auf diesem System.

DefinitionBearbeiten

Im elektromagnetischen Einheitensystem ist das ampèresche Kraftgesetz für parallele Leiter so definiert, dass in der Formel

 

die Proportionalitätskonstante k einfach die Zahl Eins ist. Die elektromagnetische Einheit (e.m.u.) des Stroms ist somit definiert als der Strom, der durch zwei parallele Leiter im Abstand d = 1 cm fließt, wenn sie pro Leiterstück der Länge = 1 cm eine Kraft von 2 dyn aufeinander ausüben. Diese Einheit der Stromstärke, Abampere oder Biot genannt, ist somit:

 .

Davon lassen sich die anderen elektromagnetischen Einheiten dieses Systems ableiten.

BedeutungBearbeiten

Das elektromagnetische Einheitensystem in seiner Reinform wird heute nicht mehr verwendet, aber das Gaußsche Einheitensystem, das verbreitetste CGS-System, hat einen Teil davon übernommen, insbesondere die Maßeinheiten Gauß und Oersted zur Beschreibung von Magnetfeldern, die auch heute noch in Gebrauch sind.

1881 definierte der Internationale Elektrizitätskongress die Einheiten Volt, Ampere und Ohm basierend auf den elektromagnetische Einheiten (e.m.u.) mit der Definition 1 V = 108 e.m.u., 1 A = 10−1 e.m.u. und 1 Ω = 109 e.m.u.,[1] um Einheiten in „handlicher“ Größenordnung zu erhalten. Dies erwies sich als eine sehr glückliche Wahl, denn daraus folgte 1 V·1 A = 107 erg/s. Da 107 erg gerade einem Joule entsprechen, konnten die so definierten Einheiten 1939 problemlos in das MKSA-System übernommen werden.

Die Definition des Ampere über das amperèsche Kraftgesetz galt bis zur Revision des Internationalen Einheitensystems im Jahr 2019.

Vergleich mit anderen EinheitensystemenBearbeiten

Größe Einheit in Basiseinheiten
SI esE Gauß emE SI Gauß
Ladung Q Coulomb (C) = A·s 3·109 statC (Fr) 10−1 abC A·s g1/2·cm3/2·s−1
Stromstärke I 1 Ampere (A) = C/s 3·109 statA 10−1 abA (Bi) A g1/2·cm3/2·s−2
Spannung U 1 Volt (V) = W/A 13·10−2 statV 108 abV kg·m2·s−3·A−1 g1/2·cm1/2·s−1
elektrische Feldstärke E 1 V/m = N/C 13·10−4 statV/cm 106 abV/cm kg·m·s−3·A−1 g1/2·cm−1/2·s−1
elektrische Flussdichte D 1 C/m2 4π·3·105 statC/cm2 4π·10−5 abC/cm2 A·s·m−2 g1/2·cm−1/2·s−1
Polarisation P 1 C/m2 3·105 statC/cm2 10−5 abC/cm2 A·s·m−2 g1/2·cm−1/2·s−1
elektrisches Dipolmoment p 1 C·m 3·1011 statC·cm    101 abC·cm A·s·m g1/2·cm5/2·s−1
Widerstand R 1 Ohm (Ω) = V/A 19·10−11 s/cm 109 abΩ kg·m2·s−3·A−2 cm−1·s
Elektrischer Leitwert G 1 Siemens (S) = 1/Ω 9·1011 cm/s 10−9 s/cm kg−1·m−2·s3·A2 cm·s−1
spezifischer Widerstand ρ 1 Ω·m 19·10−9 s 1011 abΩ·cm kg·m3·s−3·A−2 s
Kapazität C 1 Farad (F) = C/V 9·1011 cm 10−9 abF kg−1·m−2·s4·A2 cm
Induktivität L 1 Henry (H) = Wb/A 19·10−11 statH 109 abH (cm) kg·m2·s−2·A−2 cm−1·s2
magnetische Flussdichte B 1 Tesla (T) = Wb/m2 13·10−6 statT 104 G kg·s−2·A−1 g1/2·cm−1/2·s−1
magnetischer Fluss Φ 1 Weber (Wb) = V·s 13·10−2 statT·cm2 108 G·cm2 (Mx) kg·m2·s−2·A−1 g1/2·cm3/2·s−1
magnetische Feldstärke H 1 A/m 4π·3·107 statA/cm 4π·10−3 Oe A·m−1 g1/2·cm−1/2·s−1
Magnetisierung M 1 A/m 3·107 statA/cm 10−3 Oe A·m−1 g1/2·cm−1/2·s−1
magnetische Durchflutung Θ 1 A 4π·3·109 statA 4π·10−1 Oe·cm (Gb) A g1/2·cm1/2·s−1
magnetisches Dipolmoment m 1 A·m2 J/T 3·1013 statA·cm2 103 abA·cm2 (= erg/G) m2·A g1/2·cm5/2·s−1

Die beim esE auftretenden Faktoren 3 und 9 (bzw. 13 und 19) ergeben sich aus dem Zahlenwert der Lichtgeschwindigkeit c in cm/s und sind gerundet. Vor der Revision des SI von 2019, als das Ampere noch über das ampèresche Kraftgesetz definiert war, betrug der Wert exakt 2,99792458 bzw. das Quadrat dieser Zahl. Die Zehnerpotenzen ergeben sich daraus, dass „Volt“ und „Ohm“ ursprünglich als 108 bzw. 109 emE-Einheiten definiert wurden.

EinzelnachweiseBearbeiten

  1. H. G. Jerrard ua.: A Dictionary of Scientific Units: Including dimensionless numbers and scales, Springer-Science+Business Media, Southampton, 1986, S. 152. ISBN 978-94-017-0571-4