Spezifischer Widerstand

Kehrwert der elektrischen Leitfähigkeit
Physikalische Größe
Name spezifischer Widerstand
Formelzeichen
Größen- und
Einheitensystem
Einheit Dimension
SI Ω·mm2·m−1
Gauß (cgs) s T
esE (cgs) s T
emE (cgs) abΩ·cm L2·T−1
Siehe auch: elektrische Leitfähigkeit

Der spezifische Widerstand (kurz für spezifischer elektrischer Widerstand oder auch Resistivität) ist eine temperaturabhängige Materialkonstante mit dem Formelzeichen (griechisch rho). Er wird vor allem zur Berechnung des elektrischen Widerstandes einer (homogenen) elektrischen Leitung oder einer Widerstands-Geometrie genutzt. Die abgeleitete SI-Einheit für diesen Zweck ist . Für wissenschaftliche Zwecke wird üblicherweise die Einheit (dimensionengekürzt) genutzt.

Der Kehrwert des spezifischen Widerstands ist die elektrische Leitfähigkeit.

Ursache und TemperaturabhängigkeitBearbeiten

Verantwortlich für den spezifischen elektrischen Widerstand in reinen Metallen sind zwei Anteile, die sich gemäß der Matthiessenschen Regel überlagern:

Der temperaturabhängige Anteil am spezifischen Widerstand ist bei allen Leitern in einem jeweils begrenzten Temperaturbereich näherungsweise linear:

 

wobei α der Temperaturkoeffizient, T die Temperatur und T0 eine beliebige Temperatur, z. B. T0 = 293,15 K = 20 °C, bei der der spezifische elektrische Widerstand ρ(T0) bekannt ist (siehe Tabelle unten).

Je nach Vorzeichen des linearen Temperaturkoeffizienten unterscheidet man zwischen Kaltleitern (engl.: positive temperature coefficient of resistance, PTC) und Heißleitern (engl.: negative temperature coefficient of resistance, NTC). Die lineare Temperaturabhängigkeit gilt nur in einem begrenzten Temperaturintervall. Dieses kann bei reinen Metallen vergleichsweise groß sein. Darüber hinaus muss man Korrekturen anbringen (siehe auch: Kondo-Effekt).

Reine Metalle haben einen positiven Temperaturkoeffizienten des spezifischen elektrischen Widerstandes von etwa 0,36 %/K bis über 0,6 %/K. Bei Platin (0,385 %/K) nutzt man das, um Platin-Widerstandsthermometer zu bauen.

Der spezifische elektrische Widerstand von Legierungen ist nur gering von der Temperatur abhängig, hier überwiegt der Anteil der Störstellen. Ausgenutzt wird dies beispielsweise bei Konstantan oder Manganin, um einen besonders geringen Temperaturbeiwert bzw. einen temperaturstabilen Widerstandswert zu erhalten.

Spezifischer Widerstand als TensorBearbeiten

Bei den meisten Materialien ist der elektrische Widerstand richtungsunabhängig (isotrop). Für den spezifischen Widerstand genügt dann eine einfache skalare Größe, also eine Zahl mit Einheit.

Anisotropie beim elektrischen Widerstand findet man bei Einkristallen (oder Vielkristallen mit Vorzugsrichtung) mit weniger als kubischer Symmetrie. Die meisten Metalle haben kubische Kristallstruktur und sind schon daher isotrop. Zusätzlich hat man oft eine viel-kristalline Form ohne ausgeprägte Vorzugsrichtung (Textur). Ein Beispiel für anisotropen spezifischen Widerstand ist Graphit als Einkristall oder mit Vorzugsrichtung. Der spezifische Widerstand ist dann ein Tensor 2. Stufe, der die elektrische Feldstärke   mit der elektrischen Stromdichte   verknüpft.

 

Zusammenhang mit dem elektrischen WiderstandBearbeiten

Der elektrische Widerstand eines Leiters mit einer über seine Länge konstanten Querschnittsfläche (Schnitt senkrecht zur Längsachse eines Körpers) beträgt:

 
Widerstand mit Kontakten an beiden Enden
 

wobei R der elektrische Widerstand, ρ der spezifische Widerstand, l die Länge und A die Querschnittsfläche des Leiters ist.

Folglich kann man   aus der Messung des Widerstandes eines Leiterstückes bekannter Geometrie bestimmen:

 

Die Querschnittsfläche A eines runden Leiters (zum Beispiel eines Drahtes) errechnet sich aus dem Durchmesser d zu:

 

Die Voraussetzung für die Gültigkeit dieser Formel für den elektrischen Widerstand R ist eine konstante Stromdichteverteilung über den Leiterquerschnitt A, das heißt, an jedem Punkt des Leiterquerschnitts ist die Stromdichte J gleich groß. Näherungsweise ist das gegeben, wenn die Länge des Leiters groß im Vergleich zu den Abmessungen seines Querschnitts ist und der Strom ein Gleichstrom oder niederfrequent ist. Bei hohen Frequenzen führen der Skin-Effekt und bei inhomogenen hochfrequenten Magnetfeldern und Geometrien der Proximity-Effekt zu einer inhomogenen Stromdichteverteilung.

Weitere aus dem spezifischen Widerstand ableitbare Kenngrößen sind:

  • der Flächenwiderstand (Schichtwiderstand einer Widerstandsschicht); Einheit   oder  
  • der Widerstand pro Länge eines Drahtes oder Kabels; Einheit  /m

Einteilung von MaterialienBearbeiten

Bei elektrischen Leitern wird der spezifische Widerstand statt in   oft in der für Drähte anschaulicheren Form   angegeben. Weiterhin ist auch   üblich.

Es gilt:

 
 

Der spezifische Widerstand eines Materials wird häufig für die Einordnung als Leiter, Halbleiter oder Isolator verwendet. Die Unterscheidung erfolgt anhand des spezifischen Widerstands:[1]

  • Leiter:  
  • Halbleiter:  
  • Isolatoren oder Nichtleiter:  

Anzumerken ist, dass diese Einteilung keine festen Grenzen kennt und daher nur als Richtwert zu betrachten ist. Daher finden sich in der Literatur auch Angaben, die um bis zu zwei Größenordnungen abweichen können.[2][3][4][5][6] Ein Grund dafür ist die Temperaturabhängigkeit des elektrischen Widerstands, vor allem bei Halbleitern. Eine Einteilung anhand der Lage des Fermi-Niveaus ist hier sinnvoller.

Spezifischer Widerstand verschiedener MaterialienBearbeiten

Spezifischer Widerstand ausgewählter Materialien bei 20 °C
Die Daten hängen teilweise erheblich vom Reinheitsgrad ab
Material Spezifischer Widerstand
in Ω · mm2/m
Linearer Widerstands-
Temperaturkoeffizient
in 1/K
Akkusäure 1.5e4
Aluminium 2.65e-2[7] 3.9e-3
Aluminiumoxid 1e18
Bernstein 1e22
Blei 2.08e-1[7] 4.2e-3
Blut 1.6e6
Edelstahl (1.4301, V2A) 7.2e-1[8]
Eisen 1.0e-1 bis 1.5e-1 5.6e-3
Fettgewebe 3.3e7
Germanium (Fremdanteil < 10−9) 5e5[9]
Glas 1e16 bis 1e21
Glimmer 1e15 bis 1e18
Gold 2.214e-2[7] 3.9e-3
Graphit 8e0 -2e-4
Gummi (Hartgummi) (Werkstoff) 1e19
Holz (trocken) 1e10 bis 1e16
Kochsalzlösung (10 %) 7.9e4
Kohlenstoff 3.5e1 -2e-4
Konstantan 5e-1 5e-5
Kupfer (rein, „IACS“) 1.721e-2[7][10] 3.9e-3
Kupfer (Elektro-Kabel)[11] 1.69e-2 bis 1.75e-2
Kupfersulfatlösung (10 %) 3e5
Magnesium 4.39e-2
Messing 7e-2 1.5e-3
Muskelgewebe 2e6
Nickel 6.93e-2[7] 6.7e-3
NickelChrom (Legierung) 1,32[12] bis 1e-6
Papier 1e15 bis 1e17
Platin 1.05e-1[7] 3.8e-3
Polypropylenfolie 1e11
Porzellan 1e18
Quarzglas 7.5e23
Quecksilber 9.412e-1 (0 °C)[13]
9.61e-1 (25 °C)
8.6e-4
Salzsäure (10 %) 1.5e4
Schwefel 1e21
Schwefelsäure (10 %) 2.5e4
Silber 1.587e-2[7] 3.8e-3
Stahl 1e-1 bis 2e-1 5.6e-3
Titan 8e-1
Wasser (reinst) 1e12
Wasser (typ. Leitungswasser) 2e7
Wasser (typ. Meerwasser) 5e5
Wolfram 5.28e-2[7] 4.1e-3
Zinn 1.09e-1 4.5e-3

BeispielBearbeiten

Es sei die Länge eines unbekannten Metalldrahtes  , dessen Querschnitt  , die Testspannung betrage   und der Strom sei zu   gemessen worden.

Gesucht ist der spezifische elektrische Widerstand   des Draht-Materials.

Es gilt

 

Nach   umgestellt, ergibt sich

 

und mit den Werten wird

 

Der so bestimmte spezifische Widerstand des untersuchten Drahtes deutet darauf hin, dass es sich wohl um Kupfer handeln könnte.

LiteraturBearbeiten

Als Standardwerk für tabellarische Daten zum spezifischen (elektrischen) Widerstand empfiehlt sich:

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Siegfried Hunklinger: Festkörperphysik. Oldenbourg Verlag, 2009, ISBN 978-3-486-59045-6, S. 378 (Halbleiter: ρ = 10−4…107 Ω·m).
  2. Karl-Heinrich Grote, Jörg Feldhusen: Dubbel: Taschenbuch für den Maschinenbau. Springer, 2011, ISBN 978-3-642-17305-9, S. V 14 (Halbleiter: ρ = 10−3…108 Ω·m).
  3. Wolfgang Bergmann: Werkstofftechnik. 4. Auflage. Band 2. Hanser Verlag, 2009, ISBN 978-3-446-41711-3, S. 504 (Halbleiter: ρ = 10−5…109 Ω·m).
  4. Peter Kurzweil, Bernhard Frenzel, Florian Gebhard: Physik Formelsammlung: mit Erläuterungen und Beispielen aus der Praxis für Ingenieure und Naturwissenschaftler. Springer, 2009, ISBN 978-3-8348-0875-2, S. 211 (Halbleiter: ρ = 10−5…107 Ω·m).
  5. Horst Czichos, Manfred Hennecke: Das Ingenieurwissen. mit 337 Tabellen. Springer, 2004, ISBN 978-3-540-20325-4, S. D 61 (Halbleiter: ρ = 10−5…106 Ω·m).
  6. Ekbert Hering, Karl-Heinz Modler: Grundwissen des Ingenieurs. Hanser Verlag, 2007, ISBN 978-3-446-22814-6, S. D 574 (Halbleiter: ρ = 10−4…108 Ω·m).
  7. a b c d e f g h David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Properties of Solids, S. 12-41 – 12-42.
  8. Stainless Steels Chromium-Nickel (Memento vom 17. Februar 2004 im Internet Archive; PDF)
  9. Wilfried Plaßmann, Detlef Schulz (Hrsg.): Handbuch Elektrotechnik: Grundlagen und Anwendungen für Elektrotechniker. Vieweg+Teubner, 5. Aufl., 2009, S. 231.
  10. Spezifikationen des Herstellers AURUBIS: Reinkupfer (100% IACS) = 0,01721 (Memento des Originals vom 28. April 2014 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.aurubis.com
  11. Elektrokupfer E-Cu58 ident. Cu-ETP1, 1.69e-2 bis 1.75e-2, gelegentlich ≈1.9e-2 Ω · mm2/m
  12. Datenblatt einer für Präzisionswiderstände geeigneten Legierung
  13. L F Kozin, S C Hansen, Mercury Handbook, Royal Society of Chemistry 2013, Seite 25