Endliche Präsentierbarkeit (Banachraum)

mathematisches Konzept
(Weitergeleitet von Super-Reflexivität)

Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich-dimensionalen Teilräume zu untersuchen.

Definition

Bearbeiten

Ein normierter Raum   heißt endlich präsentierbar in einem normierten Raum  , wenn es zu jedem endlich-dimensionalen Untervektorraum   und jedem   einen Teilraum   und einen linearen Isomorphismus   gibt mit  .

Dabei berechnen sich die Operatornormen   und   bezüglich der auf   und   induzierten Teilraum-Normen.

  ist also endlich präsentierbar in  , wenn jeder endlich-dimensionale Teilraum von   bis auf ein   auch in   vorkommt. Mit dem Begriff des Banach-Mazur-Abstandes kann man das auch so formulieren, dass man zu jedem endlich-dimensionalen Teilraum   endlich-dimensionale Teilräume in   mit beliebig kleinem Banach-Mazur-Abstand zu   finden kann.

Unterräume von Banachräumen sind in diesen endlich präsentierbar. Die Eigenschaft der endlichen Präsentierbarkeit ist transitiv, das heißt: Ist   endlich präsentierbar in   und   endlich präsentierbar in  , so ist   endlich präsentierbar in  .

Beispiele

Bearbeiten
  • Lp([0,1]) ist endlich präsentierbar im Folgenraum  .
  •   ist nicht endlich präsentierbar in  .
  • Der Funktionenraum   ist endlich präsentierbar in c0 und umgekehrt.

Satz von Dvoretzky

Bearbeiten

Nach dem Satz von Banach-Mazur ist jeder separable Banachraum isometrisch isomorph zu einem Unterraum von  . Daher ist jeder Banachraum endlich präsentierbar in  , das heißt   ist maximal bezüglich endlicher Präsentierbarkeit. Der Satz von Dvoretzky (nach Aryeh Dvoretzky) sagt aus, dass Hilberträume minimal bezüglich endlicher Präsentierbarkeit sind:

  • Satz von Dvoretzky: Jeder Hilbertraum ist in jedem unendlich-dimensionalen Banachraum endlich präsentierbar.

Die Eigenschaft, in jedem unendlich-dimensionalen Banachraum endlich präsentierbar zu sein, charakterisiert die Hilberträume. Ist nämlich   in jedem Banachraum endlich präsentierbar, so auch in  , und man zeigt leicht, dass in   die Parallelogrammgleichung gelten muss; daher ist   nach dem Satz von Jordan-von Neumann ebenfalls ein Hilbertraum.

Super-Eigenschaften

Bearbeiten

Es sei P eine Eigenschaft, die ein Banachraum haben kann. Man sagt, ein Banachraum   sei (bzw. habe) super-P, falls jeder Banachraum, der in   endlich präsentierbar ist, ebenfalls die Eigenschaft P hat. Wenn ein Banachraum eine Super-Eigenschaft hat, dann muss nach dem Satz von Dvoretzky auch jeder Hilbertraum diese Eigenschaft haben.

Ist   ein gleichmäßig konvexer Raum und   endlich präsentierbar in  , so ist auch   gleichmäßig konvex. Gleichmäßige Konvexität ist also eine Super-Eigenschaft, das heißt ein gleichmäßig konvexer Raum ist bereits super-gleichmäßig konvex.

Super-Reflexivität

Bearbeiten

Da gleichmäßig konvexe Räume nach dem Satz von Milman reflexiv sind und da gleichmäßige Konvexität eine Super-Eigenschaft ist, sind gleichmäßig konvexe Räume super-reflexiv. Reflexivität selbst ist keine Super-Eigenschaft, das heißt Reflexivität und Super-Reflexivität sind nicht äquivalent. Super-Reflexivität wird durch den folgenden Satz von Per Enflo charakterisiert:

  • Ein Banachraum ist genau dann super-reflexiv, wenn es eine äquivalente Norm gibt, die ihn zu einem gleichmäßig konvexen Raum macht.

Da gleichmäßig konvexe Räume nach einem Satz von Shizuo Kakutani die Banach-Saks-Eigenschaft haben, folgt daraus:

  • Super-reflexive Räume haben die Banach-Saks-Eigenschaft.

Daher folgt aus der Super-Reflexivität die Super-Banach-Saks-Eigenschaft; man kann sogar zeigen:

  • Super-Reflexivität und die Super-Banach-Saks-Eigenschaft sind äquivalent.

Prinzip der lokalen Reflexivität

Bearbeiten

Nach einem Satz von Joram Lindenstrauss und Haskell Rosenthal ist der Bidual eines Banachraums   stets endlich präsentierbar in  . Dieses sogenannte Prinzip der lokalen Reflexivität wird zur folgenden genaueren Aussage verschärft:

  • Sei   ein Banachraum,   und   seien endlich-dimensionale Teilräume und es sei  . Dann gibt es einen injektiven, stetigen, linearen Operator   mit:
  1.  
  2.  
  3.   für alle  

Literatur

Bearbeiten
  • Bernard Beauzamy: Introduction to Banach Spaces and their Geometry. 2. Auflage. North-Holland, Amsterdam u. a. 1985, ISBN 0-444-87878-5.
  • Joseph Diestel: Sequences and Series in Banach Spaces. Springer, New York u. a. 1984, ISBN 0-387-90859-5.
  • Per Enflo: Banach spaces which can be given an equivalent uniformly convex norm. In: Israel Mathematical Journal. Band 13, 1972, S. 281–288.
  • Joram Lindenstrauss, Haskell Paul Rosenthal: The Lp-spaces. In: Israel Mathematical Journal. Band 7, 1969, S. 325–349.