Hermitesche Sesquilinearform

(Weitergeleitet von Hermitesche Form)

Als Hermitesches Produkt, Hermitesche Sesquilinearform oder einfach Hermitesche Form (nach Charles Hermite) bezeichnet man in der linearen Algebra eine besondere Art der Sesquilinearform ähnlich den symmetrischen Bilinearformen.

DefinitionBearbeiten

Sei   ein Vektorraum über dem Körper  . Eine Hermitesche Sesquilinearform ist eine Abbildung

 ,

die für alle   aus   und für alle   aus   die folgenden Bedingungen erfüllt:

  1.   (linear in einem Argument);
  2.   (semilinear im anderen Argument);
  3.   (Hermitesche Symmetrie).

Dabei bezeichnet   komplexe Konjugation.

Für die Reihenfolge von linearem und semilinearem Argument gibt es unterschiedliche Konventionen.

Mit der Eigenschaft (3) folgt bereits (1) aus (2) und (2) aus (1). Der Übersichtlichkeit halber werden hier aber sowohl (1) als auch (2) als Bedingungen genannt.

Eine Hermitesche Sesquilinearform ist eine Sesquilinearform, für die zusätzlich die dritte Eigenschaft gilt.

Relevant ist der Begriff der Hermiteschen Sesquilinearform nur über dem Körper der komplexen Zahlen  ; über dem Körper der reellen Zahlen   ist jede Hermitesche Sesquilinearform eine symmetrische Bilinearform. Das innere Produkt über einem komplexen Vektorraum ist eine Hermitesche Sesquilinearform. Analog dazu bezeichnet man auch eine Sesquilinearform auf einem beliebigen Modul als hermitesch, wenn   für einen beliebigen involutiven Antiautomorphismus   auf dem dem Modul zugrundeliegenden Ring gilt. Liegt   im Zentrum des Ringes, so heißt die Sesquilinearform genau dann  -hermitesch, wenn   gilt.[1]

PolarisierungBearbeiten

Für hermitesche Sesquilinearformen gilt eine Polarisierungsformel. Deren Konsequenz ist insbesondere, dass eine solche Form bereits durch ihre Werte auf der Diagonalen bestimmt ist.

Hermitesche StandardformBearbeiten

Die durch

 

definierte Abbildung heißt Hermitesche Standardform.

Siehe auchBearbeiten

LiteraturBearbeiten

EinzelnachweiseBearbeiten

  1. Nicolas Bourbaki: Algèbre (= Éléments de mathématique). Springer, Berlin 2007, ISBN 3-540-35338-0, Kap. 9, S. 49.