Ernährung des Menschen

Zuführung von Nahrung zum menschlichen Körper

Die Ernährung des Menschen beruht auf der Zufuhr von Lebensmitteln. Zu diesem Oberbegriff gehören Nahrungsmittel, Getränke und Trinkwasser. Nahrungsmittel und Getränke enthalten Makronährstoffe (Proteine, Fette und Kohlenhydrate) und somit auch Nahrungsenergie. Im Unterschied dazu besteht Trinkwasser lediglich aus Wasser mit darin enthaltenen Mikronährstoffen.

Pflanzliche Lebensmittel
Tierische Lebensmittel

Die menschliche Ernährung beeinflusst auch das körperliche, geistige, physiologische und soziale Wohlbefinden. Der bewusste Umgang mit der Zufuhr von Nahrung ist zudem ein weit verbreiteter Bestandteil der menschlichen Kulturen und vieler Religionen und Weltanschauungen.

Zur Ernährung des Menschen tragen Rohkost und gegarte Nahrungsmittel bei, die frisch oder konserviert sein können. Fehlfunktionen bei der Nahrungsaufnahme werden als Ernährungsstörungen bezeichnet. Die wissenschaftlichen Grundlagen der Ernährung des Menschen werden insbesondere von der Ernährungswissenschaft erforscht und u. a. im Studienfach Ökotrophologie vermittelt.

Ernährung im Verlauf der Evolution des Menschen Bearbeiten

Der heutige Mensch ernährt sich zumeist omnivor, jedoch auch vegetarisch oder vegan. Belege für den Anteil tierischer und pflanzlicher Nahrung bei fossilen Arten können zum Beispiel durch eine Isotopenuntersuchung von Zinkisotopen im Zahnschmelz erbracht werden.[1] Auch anhand des Knochenkollagens lässt sich bei einem menschlichen Skelett der ungefähre Anteil an tierischer oder pflanzlicher beziehungsweise maritimer oder kontinentaler Ernährung bestimmen.[2]

Frühe Verwandte der Vorfahren des Menschen Bearbeiten

 
Frühes Steingerät vom Oldowan-Typ

Aus dem Abrieb und aus anderen Merkmalen ihrer Zähne wurde geschlossen, dass die frühen Vertreter der Hominini (Australopithecus anamensis, Australopithecus afarensis, Australopithecus africanus und Homo rudolfensis) sich vor rund 3 bis 4 Millionen Jahren von einer überwiegend pflanzlichen Kost ernährten, vergleichbar mit den heutigen Pavianen;[3][4] zudem wurde postuliert, dass das Ausgraben von unterirdischen pflanzlichen Speicherorganen – das auch von Schimpansen (Pan troglodytes) bekannt ist[5][6] – Einfluss auf den Verlauf der frühen Stammesgeschichte der Hominini nahm.[7] Jedoch dauerte bereits bei den frühesten Vertretern der Gattung Homo die Säuglingsphase wohl deutlich länger als bei Australopithecus und Paranthropus.[8]

Frühe Hinweise auf Fleischverzehr sind 2,4 Millionen Jahre alte Schnittspuren an fossilen Knochen von der Fundstelle Ain Boucherit in Algerien.[9] Jedoch wird heute erst Homo habilis zugeschrieben (mit dessen rund 2 Millionen Jahre alten Fossilien auch Steinwerkzeuge und als gesichert geltende Schnittspuren an Knochen gefunden wurden), dass er in etwas größerem Maße als die Individuen früherer Arten der Hominini das Fleisch großer Wirbeltiere verzehrt hat.[10] Offenbar wurden damals mit Hilfe von Steinwerkzeugen zusätzliche Nahrungsquellen – Fleisch und Knochenmark – erschlossen. Dies geht jedenfalls aus 1,95 Millionen Jahre alten Knochenfunden hervor, die in Kenia geborgen wurden und bezeugen, dass damals bereits neben Antilopenfleisch auch das Fleisch zahlreicher im Wasser lebender Tiere – darunter Schildkröten, Krokodile und Fische – verzehrt wurde.[11] Hyperostotische Veränderungen am rund 1,7 Millionen Jahre alten Fossil KNM-ER 1808 von Homo erectus wurden auf den Verzehr großer Mengen Fleischfresser-Leber zurückgeführt,[12] und die ebenfalls krankhaften Veränderungen an einem 1,5 Millionen Jahre alten, den Hominini zugeschriebenen Schädelknochen eines Kleinkindes (Olduvai Hominid OH 81) wurden als Folge einer Anämie interpretiert, einer Erkrankung, die mit Eisenmangel in Verbindung gebracht wird. Hier gibt es Spekulationen, diese Anämie könnte darauf hinweisen, dass zu diesem Zeitpunkt bereits eine Anpassung an einen regelmäßigen Verzehr von Fleisch stattgefunden habe.[13]

Gestützt werden diese Interpretationen durch eine Studie, in der diverse physiologische und genetische Besonderheiten des anatomisch modernen Menschen – im Vergleich mit anderen Primaten – analysiert wurden. So sei der Säuregehalt des Magens bei Fleischfressern deutlich höher als bei Pflanzenfressern – und beim Menschen sogar höher als bei vielen anderen Fleischfressern. Dies sei vermutlich dem Umstand geschuldet, dass die Magensäure potentiell krankmachende Bakterien auf Fleisch abtötet. Auch unterscheide sich die Einlagerung von Fettvorräten in die Körperzellen – auch hierbei ähnele der Mensch anderen Fleischfressern.[14] Den Forschern zufolge weitete sich der Fleischverzehr – beginnend vor rund 2 Millionen Jahren – allmählich aus und erreichte seinen Höhepunkt bei Homo erectus. Spätestens im Jungpaläolithikum sei eine Umkehr dieses Prozesses zu beobachten, der sich in der Mittelsteinzeit (das ist in Europa die Periode nach dem Ende der letzten großen Vereisung) verstärkte und in der Jungsteinzeit, mit Beginn des Ackerbaus, seinen Höhepunkt fand. Die Forscher vermuten aufgrund ihrer und früherer Befunde, dass der anatomisch moderne Mensch erst in stammesgeschichtlich jüngster Zeit – seit rund 85.000 Jahren[15] – zunehmend pflanzliche Kost für seine Ernährung genutzt hat; hierfür sprächen auch die Funde von Steingeräten, die zur Verarbeitung von Pflanzenmaterial tauglich waren.

Video: Braucht der Mensch Fleisch?

Im Verlauf der Stammesgeschichte des Menschen, insbesondere in der Spätphase des Homo erectus, nahm das Hirnvolumen immer weiter zu.[16] Homo erectus hatte zudem bereits vor rund 1 Million Jahren den Umgang mit Feuer gelernt und begonnen es zur Erschließung zusätzlicher Nahrungsquellen zu nutzen.[17] In der auf ein Alter von 780.000 Jahre datierten Fundstätte Gesher Benot Ya’aqov in Israel wurden tausende Überreste von Fischen geborgen, deren Untersuchung den Schluss zuließ, dass die Fische nicht in offenem Feuer gegart worden waren, sondern durch Kochen. Dies sei „der früheste Beweis für das Kochen durch Homininen“.[18]

Viele Wissenschaftler gehen von einem erhöhten Bedarf an Proteinen in dieser Phase aus, die in tierischer Kost leichter zugänglich sind.[19] Zugleich musste das Gehirn vermehrt mit Glucose versorgt werden, weshalb der Zugang zu stärkehaltiger Nahrung ebenfalls eine wichtige Rolle gespielt haben dürfte.[20] Welches Gewicht bei der Gehirnentwicklung dem Fleisch- und welches dem Stärkekonsum zukam, wird kontrovers diskutiert. Erschwert wird die Klärung dadurch, dass sich Pflanzenmaterial grundsätzlich weniger gut erhält, während Knochenfunde sehr viel länger auffindbar bleiben.[21] Im Jahr 2021 veröffentlichte Analysen des Zahnbelags von fossilen Zähnen deuten darauf hin, dass stärkereiche Nahrung, möglicherweise durch Kochen modifiziert, bereits vor mindestens 600.000 Jahren, also in der Spätphase des afrikanischen Homo erectus, verzehrt wurde.[22] Die Autoren sehen darin einen Beleg für die wichtige Rolle, die stärkehaltige Nahrung bei der Evolution des menschlichen Gehirns gespielt hat.[23] Vergleichbare Befunde waren zuvor auch für Neandertaler, die engsten Verwandten des Homo sapiens, beschrieben worden.[24][25]

Rolle des Jagens Bearbeiten

Spätestens vor 450.000 Jahren gab es Jagdaktivitäten, wie Funde von Waffenresten von Homo heidelbergensis in Europa eindeutig belegen.[26] Es wird ein stetig wachsender Fleischanteil in der Ernährung vermutet,[27] was in der Fachwelt aber nicht unwidersprochen ist. Zum einen könnten Knollen und Zwiebeln doch einen höheren Anteil an der Nahrung des späten Homo erectus (= Homo heidelbergensis) gehabt haben, zum anderen könnte vor allem das Sammeln und Fangen von Kleintieren, wie Nager oder Schildkröten, zur Deckung des Nahrungsbedarfs gedient haben. Womöglich wird die Bedeutung der Jagd also überschätzt. An Funden aus der Höhle von Arago bei Tautavel in Südfrankreich wurde beispielsweise die Abnutzung der Zähne von Homo heidelbergensis mikroskopisch untersucht. Die Ergebnisse ließen auf eine raue Nahrung schließen, die zu mindestens 80 Prozent aus pflanzlichen Anteilen bestand.[28] Zu beachten ist hier, dass aus dem europäischen Homo heidelbergensis zwar der Neandertaler hervorging, nicht aber der anatomisch moderne Mensch (Homo sapiens). Jedoch wird dem afrikanischen Homo rhodesiensis, der vermutlich zum Formenkreis des sogenannten archaischen Homo sapiens gehört, wegen seiner stark abgenutzten Zähne ebenfalls der Verzehr von überwiegend sehr rauer pflanzlicher Nahrung zugeschrieben.[29]

Eine Meta-Studie aus dem Jahr 2022 betrachtete archäologische Studien zu Homo erectus-Funden aus 9 Ausgrabungsgebieten in Afrika. Dabei zeigte sich, dass dort auf Basis der „meat made us human“-These verstärkt nach Beweisen für fleischliche Kost gesucht wurde, also ein Stichprobenfehler vorliegt. Nach Korrektur dieses Stichprobenfehlers zeigten sich für Homo erectus keine Beweise mehr für eine vermehrt fleischliche Kost.[30]

Die mehr als 150.000 Jahre alten Hinterlassenschaften der afrikanischen Pinnacle-Point-Menschen verweisen auf eine intensive Nutzung von Meeresfrüchten. Der älteste Beleg für Fischfang auf dem offenen Meer stammt aus Osttimor und wurde auf ein Alter von 42.000 Jahren datiert.[31]

Der anatomisch moderne Mensch Bearbeiten

Nach heutigem Kenntnisstand des Verlaufs der Hominisation ist der anatomisch moderne Mensch (Homo sapiens) demnach „von Natur aus“ weder ein reiner Fleischfresser (Carnivore) noch ein reiner Pflanzenfresser (Herbivore), sondern ein Allesfresser (Omnivore).[32][33] Frühe Belege für den Verzehr gekochter, unterirdischer Pflanzenteile fand man in 170.000 Jahre alten Bodenschichten der Border Cave in Südafrika.[34] Ethnographische Auswertungen von weltweit 229 heute noch existierenden Jäger- und Sammlervölkern ergab, dass der Anteil pflanzlicher Kost zwischen 0 und 85 % variiert, während tierische Nahrung einen Beitrag von 15 bis 100 % leistet. Diese enorme Bandbreite der Lebensmittelauswahl ist auf die unterschiedlichen geographischen und klimatischen Lebensverhältnisse zurückzuführen.[35] Die omnivore Lebensweise erleichterte es dem modernen Menschen, sich nahezu jedes Ökosystem der Erde als Lebensraum zu erschließen.[36] Während sich einige kleinere Bevölkerungsgruppen wie die Evenki in Sibirien, die Eskimos und die Massai auch heute noch überwiegend fleischlich ernähren, leben große Teile der südasiatischen Bevölkerung sowie einige Völker in den Anden in erster Linie von pflanzlichen Nahrungsmitteln; die Analyse von rund 6000 bis 9000 Jahre alten (Cal BP) Knochenfunden aus dem peruanischen Altiplano ergab im Jahr 2024, dass dort damals 70 bis 95 % der Nahrung aus Pflanzen bestand.[37]

Vor rund 10.000 Jahren führte die Verbreitung des Ackerbaus zur sogenannten neolithischen Revolution. Diese kulturell äußerst bedeutsame Entwicklung ging einher mit der Sesshaftigkeit und führte durch die planvolle Nutzung der Natur zu einer größeren Unabhängigkeit von äußeren Bedingungen.[38] Teilweise verschlechterte dies allerdings die Ernährungslage der Menschen durch eine drastische Verengung des Nahrungsangebots auf wenige Feldfrüchte.[39][40][41]

Heutige Ernährung Bearbeiten

 
Zutaten für abwechslungsreiche Mischkost
 
Zubereitete Speisen und Bier
 
Milchprodukte, Obst, Gemüse und Hülsenfrüchte
 
Phở bò (vietnamesische Nudelsuppe mit Rindfleisch)

Claus Leitzmann argumentiert, dass der Mensch zwar als Omnivor in der Lage dazu ist, tierische Nahrung zu essen, er jedoch besser an Pflanzenkost angepasst sei.[42] Fleisch habe zwar in der menschheitsgeschichtlichen Entwicklung immer wieder eine Rolle gespielt, bspw. bei der Gehirnentwicklung,[43] doch könne letztlich davon ausgegangen werden, dass die pflanzliche Kost in allen längeren Entwicklungsphasen mengenmäßig die größte Bedeutung hatte.[44]

In erster Linie ist das, was der Mensch isst, wie er es zubereitet (siehe Kochkunst) und zu sich nimmt (siehe Esskultur), sowie das, was er nicht isst (siehe Nahrungstabu), von seiner Kultur abhängig; deshalb gibt es große regionale und zeitliche Unterschiede.[45] Da sich vor allem in den Industrieländern durch die Zunahme sitzender Tätigkeiten und abnehmender körperlicher Betätigung der Lebensstil verändert und in der Folge der Energie- und Nährstoffbedarf verringert hat, entsteht bei vielen Menschen ein Missverhältnis zwischen Nährstoffbedarf und Nährstoffzufuhr. Insbesondere die Zunahme an Zivilisationskrankheiten wird der modernen Fehlernährung zugeschrieben.

Zahlreiche Ansichten, Theorien und Lehren behaupten, Empfehlungen und Vorgaben für die „richtige“ Ernährung zu propagieren. Beispiele sind die Vollwerternährung, die Rohkost-Lehre, die Low-Carb-Ernährung, die Ernährung nach den Fünf Elementen aus der traditionellen chinesischen Medizin, die Ayurveda-Lehre, der Pescetarismus, der Vegetarismus und der Veganismus, die Makrobiotik, die Trennkost-Lehre und die Steinzeiternährung. Antworten auf die Frage nach der „richtigen“ Ernährung werden durch die Diätetik wissenschaftlich erforscht. Die Deutsche Gesellschaft für Ernährung hat Regeln zur Zusammenstellung formuliert, die sie als „vollwertige Ernährung“ bezeichnet.[46]

Das globale Ernährungssystem Bearbeiten

Völker, Kollektive, Regionen und/oder Zivilisationen benötigten zur Sicherstellung von Erhalt und Überleben Systeme zur Produktion und Verteilung von Lebensmitteln. Im Laufe der Globalisierung entstand ein zunehmend globales System mit weltweit verteilten Komponenten und Untersystemen der Nahrungs-Produktion und -Verteilung der gegenwärtigen menschlichen Zivilisation. Eine Transformation dieses globalen Ernährungssystems ist laut Studien entscheidend für ein Erreichen der Klimaziele des Pariser Abkommens.[47][48] Ernährungssysteme sind zentrale Bestandteile von Gesellschaften und eng mit vielen „externen“ sozialen und technischen Aspekten verbunden, sowie Teil des Ökosystems der Erde.

Nährstoffe Bearbeiten

Nährstoffe werden in Makro- und Mikronährstoffe unterschieden. Makronährstoffe sind Proteine, Fette und Kohlenhydrate, die dem Körper als Energielieferant dienen. Als Mikronährstoffe bezeichnet man alle wichtigen Nahrungsmittelbestandteile, aus denen sich keine Energie gewinnen lässt, die aber für die Körperfunktionen essenziell sind, beispielsweise Vitamine, Mineralstoffe und Spurenelemente.

Proteine Bearbeiten

Proteine sind vor allem für den Muskel- und Zellaufbau nötig. Auch können sie im Körper zur Energiegewinnung verwertet werden, die DGE empfiehlt hier, dass mindestens 10 % des Energiebedarfs aus Proteinen und Aminosäuren gedeckt werden. Da die Anteile der verschiedenen Aminosäuren aus tierischen Quellen eher dem Bedarf des Menschen entsprechen, besitzen tierische Quellen eine höhere biologische Wertigkeit. Die Annahme, dass 10 % reichen, trifft jedoch nur unter sehr engen Voraussetzungen zu (wenig Körpergewicht, kein Sport, keine körperliche Arbeit etc.), da für die Aufrechterhaltung der Proteinstrukturen des Körpers 0,8 g/kg Körpergewicht als angemessen gelten. Soll nun mit Training auch noch Muskelmasse aufgebaut oder im Rahmen einer Diät (Low Carb) Protein im Energiestoffwechsel eingesetzt werden, so reichen die 0,8 g/kg bei weitem nicht aus. Bis ca. 4 g/kg Körpergewicht kann die Leber am Tag verstoffwechseln. Wo dazwischen die individuell richtige Menge liegt, hängt von der körperlichen Belastung (Training) ab.[49]

Proteinreiche Lebensmittel enthalten mindestens 10 g/100 g verzehrbare Masse. Da tierische Proteinquellen allerdings etwa in der veganen Ernährung nicht vorkommen, gilt proteinreichen Pflanzen ein besonderes Augenmerk.

Kohlenhydrate Bearbeiten

 
Lasagne
 
Apfelkuchen mit Vanilleeis

Kohlenhydrate stellen eine der drei Quellen der Energiegewinnung dar, sind jedoch im Gegensatz zu den anderen beiden, Proteinen und Fettsäuren, kein essenzieller Nahrungsbestandteil. Laut Empfehlung der Deutschen Gesellschaft für Ernährung (DGE) sollen 55 % des Energiebedarfs aus Kohlenhydraten gedeckt werden.[50]

Die DGE empfiehlt vor allem Kohlenhydrate aus ballaststoffreichen Pflanzen, da diese langsamer vom Körper aufgenommen werden (niedriger glykämischer Index). Aufgrund der geringen Energiedichte ballaststoffreicher Pflanzen sind entsprechend große Mengen zu konsumieren, wodurch diese mengenmäßig die Hauptbestandteile der Ernährung ausmachen sollten.

Einfachzucker gelangen zügig ins Blut, von dort in die Zellen und bieten sich als schnell verfügbare Energiequelle an. Allerdings ist diese nicht lange im Blut verfügbar, da der Körper auf große Mengen Zucker im Blut mit entsprechend großen Mengen an Insulin reagiert. Das Insulin sorgt u. a. dafür, dass die überschüssige Energie in Form von Fett in den Fettzellen eingelagert wird. Der Regelkreislauf dafür ist recht komplex und wird im Artikel Energiebilanz der Ernährung näher erläutert.

Ballaststoffe Bearbeiten

Als Ballaststoffe werden weitgehend unverdauliche Nahrungsbestandteile – hauptsächlich pflanzliche Kohlenhydrate – bezeichnet, die vom Menschen gar nicht oder nicht vollständig verdaut werden können und aus denen deshalb im Verdauungstrakt keine oder fast keine Energie gewonnen werden kann. Ballaststoffe sind, anders als die Bezeichnung nahelegt, kein überflüssiger „Ballast“, sie unterstützen vielmehr die Verdauung der Nährstoffe und fördern zusammen mit ausreichend Flüssigkeit die Peristaltik des Darms. Die DGE empfiehlt mindestens 30 g Ballaststoffe am Tag aufzunehmen.[51]

Fette Bearbeiten

Da Fette eine sehr hohe Energiedichte besitzen, werden vom Körper geringere Mengen an fetthaltigen Lebensmitteln benötigt, um Energie zu gewinnen. Einige wenige Fettsäuren sind essenziell und dienen der Synthetisierung weiterer Substanzen.

Fette sind der Hauptbestandteil von Biomembranen und dienen auch der Energiegewinnung. Es kommen viele Fettsäuren in der Natur vor, aber unter den Gesichtspunkten der menschlichen Ernährung sind folgende Klassen von Fettsäuren relevant:

Essenzielle Fettsäuren sind Fettsäuren, die der Körper nicht selbst aus anderen Stoffen herstellen kann, sondern durch die Nahrung aufgenommen werden müssen, und gehören damit – neben den Essenziellen Aminosäuren und einigen Mineralien – zur Gruppe der Essenziellen Stoffe. Die Essenziellen Fettsäuren sind Linolsäure (eine Omega-6-Fettsäure) und α-Linolensäure (eine Omega-3-Fettsäure).

Die essenziellen Fette sind am Transport von Nährstoffen und Stoffwechselprodukten beteiligt und werden damit auch für die Regeneration der Zellen benötigt. Die Omega-3-Fettsäuren werden hierbei insbesondere für den Herzkreislauf, das Immun- und das Nervensystem benötigt. Ein Mangel an Omega-3-Fettsäuren kann Krankheiten wie hohen Blutdruck, hohe LDL-Cholesterinwerte, Herzerkrankungen, Diabetes mellitus, Rheumatoide Arthritis, Osteoporosis, Depression, Bipolare Störung, Schizophrenie, Aufmerksamkeitsdefizit, Hautkrankheiten, entzündliche Darmerkrankungen, Asthma, Darmkrebs, Brustkrebs und Prostatakrebs begünstigen.[52]

Bei den Omega-3 Fetten gilt es zudem zu beachten, dass pflanzliche Quellen α-Linolensäure (ALA) enthalten, während Fisch oder Algen Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) liefern. Gesundheitliche Vorteile ergeben sich sowohl durch die pflanzliche als auch die tierische Variante, da der menschliche Körper enzymatisch ALA in EPA und EPA in DHA umwandeln kann.[53] Ein gesundheitlicher Vorteil durch die Ergänzung von Omega-3 über die Einnahme von Fisch- oder Algenölkapseln ist hingegen nicht nachgewiesen.[54]

Die Fette werden auch für Ausdauersport benötigt. Da der Körper nur eine geringe Menge an Kohlenhydraten speichern kann, können bei entsprechender sportlicher Betätigung bereits nach 30 Minuten die Kohlenhydrat-Reserven aufgebraucht sein. Für längere Betätigung greift der Körper auf Fette zu, weshalb für Ausdauersport eine höhere Menge an Essenziellen Fettsäuren konsumiert werden muss.

Mineralstoffe Bearbeiten

Mineralstoffe werden nach der Menge, in der sie im Körper vorkommen oder benötigt werden, unterschieden. Hierbei sind Mengenelemente im menschlichen Körper zu   enthalten, während Spurenelemente in geringerer Konzentration vorkommen.

Mengenelemente Bearbeiten

Elektrolyte sind elektrisch leitfähige Salze aus Mineralien. Hierbei sind insbesondere die Elemente Calcium, Chlor, Magnesium, Kalium und Natrium beteiligt. Die Salze werden in allen Körperflüssigkeiten und allen Stoffwechselvorgängen benötigt. Eine besondere Rolle spielen sie beim Transport von Nährstoffen und Stoffwechselprodukten im Blut sowie den Nervenfunktionen. Die wichtigste Verbindung ist das Kochsalz. Elektrolyte werden insbesondere über die Nieren mit dem Urin sowie durch Schweiß ausgeschieden. Bei einem hohen Konsum von Wasser mit geringem Elektrolytgehalt sowie starker körperlicher Betätigung und Hitze kann es zu einem Mangel an Elektrolyten und damit zur Wasservergiftung kommen.

Spurenelemente Bearbeiten

Für den Menschen gibt es essentielle Spurenelemente, die nur in geringen Mengen zugeführt werden sollen. Sowohl ein Mangel als auch ein Überangebot kann gesundheitliche Folgen haben. Oft werden diese Elemente fälschlich als „Mineralien“ bezeichnet. Manche werden z. T. künstlich über Speisesalz zugeführt (Jod und Fluor). Das Eisen wird wegen seiner Wirkungsweise zu den Spurenelementen gezählt, obwohl im menschlichen Körper etwa 60 mg/kg enthalten sind und das Element selbst das vierthäufigste auf der Erde ist.

Vitamine Bearbeiten

Vitamine sind lebenswichtige organische Stoffe, die der Mensch nicht bedarfsdeckend synthetisieren kann. Vitamine müssen daher mit der Nahrung aufgenommen werden, sie gehören zu den essentiellen Stoffen. Eine Ausnahme ist das Vitamin D, das in der Haut unter Einwirkung von UV-B-Strahlung aus 7-Dehydrocholesterol gebildet werden kann.

Wasserbedarf Bearbeiten

Der Körper benötigt Wasser vor allem aufgrund von Verlusten durch die Atmung, für Stoffwechselvorgänge und Kühlung durch Verdunstung über die Haut. Der tägliche Wasserbedarf eines Menschen bezogen auf das Körpergewicht ρ beträgt etwa  .

Beispiel
Der Wasserbedarf VW einer Person P mit einer Masse mP von 80 kg beträgt pro Tag:
 

Da der Körper bei heißem Wetter und bei körperlicher Betätigung zusätzliche Wärme über Verdunstung abführen muss, kann der Wasserbedarf auch höher liegen. Ein Liter Wasser kann 600 kcal an Wärme durch Verdunstung abführen. Da die abzuführende Energiemenge abhängig von den Wetterbedingungen, der konkreten Betätigung und den physischen Gegebenheiten des Menschen individuell verschieden ist, stellt der angegebene Wert nur einen Richtwert dar.

Energiebedarf Bearbeiten

Ein Mensch benötigt in der Stunde etwa 1 kcal (= 4,1868 kJ) Energie je Kilogramm Körpergewicht an Grundumsatz.

Beispiel
Der Energiebedarf EP einer Person P mit einer Masse mP von 80 kg an einem Tag beträgt:
 

Aufgrund von Aktivitäten hat der Körper einen zusätzlichen Energieverbrauch, den Leistungsumsatz. Der Gesamtumsatz ist die Summe aus Grundumsatz und Leistungsumsatz.

In einer ausgewogenen Ernährung sollte – über einen Zeitraum von mehreren Tagen gemittelt – etwa 55 % des Energiebedarfs aus Kohlenhydraten, mindestens 15 % aus Proteinen und 30 % aus Fetten stammen.[50] Für Low-Carb-Diäten kann auch der Anteil der Fette höher und im Gegenzug der Anteil an Kohlenhydraten niedriger ausfallen. Die Voraussetzung bilden jedoch besonders hochwertige Fette.

empfohlener Anteil der primären Energiequellen am Energiebedarf
Energiequelle Vollkost Reduktionskost
Kohlenhydrate 55 %[55]
Protein 15 % 15 %…20 %[55]
Fett (gesamt) 30 % 25 %…30 %[55]
gesättigte Fettsäuren 7 %…10 %,[55] 0 %[56]
einfach ungesättigte Fettsäuren 10 %…15 %[55]
mehrfach ungesättigte Fettsäuren (Omega-6, Omega-3) 7 %…10 %[55]

Wird Sport oder körperlich anstrengende Arbeit ausgeübt, muss aufgrund des höheren Energieverbrauchs zusätzliche Energie zugeführt werden. Abhängig von der Intensität der Aktivität – und damit der Belastungszone – werden vom Körper unterschiedliche Energiequellen benötigt.

Deckung von zusätzlichem Energiebedarf[57]
Aktivitätslevel Belastungszone Protein Fett Kohlenhydrate
Hohe Intensität Anaerobe Zone 3 % 7 % 90 %
Mittlere Intensität Aerobe Zone 5 % 35 % 60 %
Geringe Intensität Fettverbrennungszone 10 % 70 % 20 %

Hierbei ist

Hohe Intensität
Dauer von unter einer Stunde mit hohem Aktivitätsgrad wie schnelles Laufen (5 km bis 10 km), Basketball, Tennis, Hockey, Fußball etc.
Mittlere Intensität
Dauer von einer bis drei Stunden mit mittlerem Aktivitätsgrad wie Marathon, Triathlon, schnelles Fahrradfahren etc.
Geringe Intensität
Dauer von mehr als drei Stunden mit geringem Aktivitätsgrad wie Fahrradfahren, Wandern etc.

Energiegehalt von Lebensmitteln Bearbeiten

Der Energiegehalt E eines Lebensmittels berechnet sich aus der Masse m des Inhaltsstoffes multipliziert mit dessen Brennwert H. Für Proteine und Kohlenhydrate beträgt der Brennwert etwa  , während der Brennwert von Fetten etwa   beträgt. Ethanol hat einen Energiegehalt von etwa  . Der Brennwert anderer Inhaltsstoffe kann in der Praxis meist vernachlässigt werden.

Beispiel
Ein Glas mit einem Volumen VG von 200 ml mit Milch mit 3,6 % Fettanteil hat laut Verpackung einen Nährwert von 3,3 g Protein, 3,6 g Fett und 4,7 g Kohlenhydrate je 100 ml. Es soll der Energiegehalt E und die Anteile der jeweiligen Nährstoffe am Gesamtenergiegehalt ermittelt werden:
 
 
 
 
 
 
 
Es sticht hierbei deutlich hervor, dass von der Milch mit 3,6 % Fett etwas mehr als die Hälfte des Nährwertes Fett ausmacht.

Vor allem bei Personen mit Mangelerscheinungen (das heißt auch bei Adipositas) empfiehlt es sich eine überschlagsmäßige Berechnung der in einer Woche konsumierten Lebensmittel durchzuführen. Verschiedene ballaststoffreiche Gemüse mit geringer Energiedichte können und sollen in nahezu beliebiger Menge ergänzt werden.

Ernährung in der Medizin Bearbeiten

Mit den Besonderheiten der Ernährung bei Krankheit beschäftigt sich die Ernährungsmedizin. Bei bestimmten Krankheiten werden zusätzlich zur medikamentösen Therapie Diäten verordnet, um den Krankheitsverlauf zu begünstigen. In der Medizin unterscheidet man prinzipiell:

  • Orale Ernährung: Der Patient kann sich auf natürlichem Wege, also über den Mund (oral) ernähren. Eventuell muss die Kost aber verändert, zum Beispiel passiert werden, um ihm das Essen zu erleichtern. Reicht auch dies nicht aus, kommt voll bilanzierte Trinknahrung zum Einsatz, sogenannte Astronautenkost, die den gesamten Nährstoffbedarf deckt, sofern der Patient eine ausreichende Menge davon trinkt. Bei schwerer Abwehrschwäche, etwa nach einer Chemotherapie, darf nur keimarme Nahrung verzehrt werden, um Infektionen mit Bakterien und Pilzen vorzubeugen.
  • Künstliche Ernährung: Der Patient kann nicht mehr auf natürlichem Wege essen. Er muss deshalb künstlich ernährt werden. Dazu gibt es prinzipiell zwei Möglichkeiten:
    • Enterale Ernährung: Statt der normalen Nahrung wird eine für die Art der Krankheit geeignete Sondenkost über eine Magen- oder PEG-Sonde in den Verdauungstrakt eingebracht. Wann immer möglich wird dieser Zugangsweg bevorzugt, da er der natürlichen Nahrungsaufnahme am nächsten kommt.
    • Parenterale Ernährung: Die in Lösung oder Emulsion befindlichen Nahrungsbestandteile werden als Infusion über einen intravenösen Zugangsweg direkt ins Blut verabreicht. Die Industrie bietet hierzu zahlreiche Produkte an, bei denen die Nahrungskomponenten entweder selbst zusammengestellt werden können (Zwei- oder Drei-Flaschen-System) oder in einer festen Kombination (All-in-one-Lösungen, Drei-Kammern-Beutel) vorliegen.
Enterale und parenterale Ernährung können auch kombiniert werden. Wird als ausschließliche Ernährungsform eine bedarfsdeckende parenterale Ernährung eingesetzt, so spricht man von „totaler parenteraler Ernährung“.

Probleme bei der Ernährung Bearbeiten

Alle Tiere sind auf eine Reihe von Nährstoffen angewiesen, die ihr Körper nicht selbst synthetisieren kann. Diese Nährstoffe nennt man essenziell (lebensnotwendig). Dazu zählen auch Vitamine (lateinisch vita ‚Leben‘), sie werden in geringsten Mengen (µg/kg pro Tag) benötigt und wirken meist als Cofaktoren zu Enzymen. Während Pflanzen keine Vitamine benötigen, kann der Mensch manche Stoffe nicht selbst bilden und ist daher obligatorisch auf deren Zufuhr angewiesen. Von essenziellen Aminosäuren und den essenziellen ungesättigten Fettsäuren Linolsäure und Linolensäure benötigt der Mensch täglich größere Mengen (mg/kg pro Tag).[58]

Fehl- und Mangelernährung Bearbeiten

Entspricht die Menge oder die Zusammenstellung einer Ernährung nicht den Anforderungen des menschlichen Organismus, so spricht man von Fehlernährung oder Mangelernährung. Diese Bezeichnungen werden gelegentlich synonym verwendet; Fehlernährung ist allerdings weiter gefasst als Mangelernährung, da Fehlernährung sowohl eine Unterversorgung als auch eine Überversorgung mit Nahrungsbestandteilen beschreibt. Mangelernährung bedeutet dagegen stets eine Unterversorgung mit bestimmten, essenziellen Nahrungsbestandteilen. Eine Fehlernährung durch Überversorgung, insbesondere mit Nahrungsenergie, wird im Allgemeinen mit der Ernährungssituation in Industrieländern in Verbindung gebracht, während eine Mangelernährung als typisch für Entwicklungsländer gesehen wird.[38] Trotz der allgemeinen Überversorgungen ist die mangelhafte Versorgung mit einzelnen Nahrungsbestandteilen aber auch in Industrieländern eine häufige Krankheitsursache. Hier wird sie durch eine falsche Nahrungszusammensetzung verursacht, tritt aber auch als sekundärer Effekt, zum Beispiel als Folge krankheitsbedingter Malabsorption auf.[59] Spezielle Ernährungsformen wie Vegetarismus sind dagegen an sich keine Ursache von Mangelernährung, sie sind, im Gegenteil, oft sogar mit einem besseren Ernährungsstatus verknüpft.[60]

In den Industrieländern ist die Überernährung, als häufigster Faktor der Fehlernährung, für einen großen Teil der hohen und stetig steigenden Kosten im Gesundheitswesen verantwortlich. Übergewicht erhöht das Risiko von Herz-Kreislauferkrankungen und zwar sowohl direkt, als auch indirekt über die Begünstigung weiterer Risikofaktoren, wie zum Beispiel hohe Cholesterinwerte, Bluthochdruck oder Diabetes mellitus. Sowohl Über- als auch Unterversorgung mit Nahrungsenergie haben zudem einen negativen Einfluss auf das Immunsystem und reduzieren die Infektionsresistenz. Unter den Mangelernährungen ist die Protein-Energie-Malnutrition (PEM), mit den Krankheitsbildern Marasmus und Kwashiorkor, die häufigste Form der Fehlernährung und vor allem in industriell weniger entwickelten Ländern anzutreffen. Weitere in größerem Umfang anzutreffende Formen der Mangelernährung sind Mikronährstoffmängel, insbesondere Anämien sowie Vitamin-A- und Jodmangel. Seltener treten dagegen der Vitamin-D-Mangel mit dem Krankheitsbild der Rachitis, der Vitamin-C-Mangel (Skorbut), Thiaminmangel (Beriberi) und Niacinmangel (Pellagra) auf.[38]

Ernährungsbedingte (alimentäre) Krankheiten Bearbeiten

Fehl- und Mangelernährung können ihrerseits Krankheiten verursachen oder begünstigen, etwa Skorbut bei Vitamin-C-Mangel, Beriberi bei Vitamin-B1-Mangel oder Diabetes mellitus bei Adipositas (starkem Übergewicht). Für diese und andere Krankheiten, vor allem für die Mangelerkrankungen, ist der Zusammenhang mit Fehl- oder Mangelernährung wissenschaftlich bewiesen.

Des Weiteren gibt es eine große Zahl an Krankheiten, insbesondere die Zivilisationskrankheiten, für die diskutiert wird, ob sie durch die moderne Ernährungsweise zumindest mitverursacht werden, zum Beispiel Arteriosklerose, Bluthochdruck und Krebs.[61] Einen wissenschaftlichen Nachweis dieser Annahme gibt es bisher nur für wenige Erkrankungen. Generell sind Zusammenhänge zwischen Ernährung und Krankheit, methodisch bedingt, schwierig nachzuweisen. Für die meisten Zivilisationskrankheiten gibt es höchstwahrscheinlich nicht nur eine einzige Ursache, sondern eine Kombination von Ursachen, darunter genetische Veranlagung, unzureichende körperliche Aktivität, Ernährung und Umwelteinwirkungen.

Ernährungspolitik Bearbeiten

Im globalen Maßstab befasst sich die Food and Agriculture Organization (FAO) der Vereinten Nationen (UNO) mit für die Menschheit zentralen ernährungspolitischen Fragen. Besonders in den sogenannten Entwicklungsländern bekämpft die FAO mit unterschiedlichen Projekten Mangel- und Unterernährung. Dabei werden auch traditionelle Nahrungsquellen neu erschlossen, wie im Projekt Edible Forest, das in tropischen und subtropischen Regionen für den Verzehr von Insekten zur ausreichenden Versorgung mit tierischem Eiweiß wirbt.[62] Auch in puncto Umweltschutz ist unsere Ernährung keineswegs von geringer Bedeutung: ein Drittel der weltweit verursachten Treibhausgas-Emissionen ist auf nicht-nachhaltigen Anbau von Lebensmitteln zurückzuführen. Dabei spielt der hohe Fleischkonsum westlicher Länder eine besonders verheerende Rolle, da die benötigte Menge an Getreide für die zum Teil jahrelange Fütterung eines Masttiers bis zum Zeitpunkt der Schlachtung in keinem Verhältnis zu dem daraus gewonennen Fleisch steht.[63]

In Deutschland spielt sowohl auf Bundesebene als auch auf der jeweiligen Landesebene das Thema Ernährung politisch eine Rolle. Während es gegenwärtig auf Bundesebene beim Bundesministerium für Ernährung und Landwirtschaft angesiedelt ist, gibt es in den Bundesländern unterschiedliche Zuständigkeiten, teilweise ist es dort dem Verbraucherschutz zugeordnet. Wichtigste Entwicklung in der Ernährungspolitik ist der Nationale Aktionsplan IN FORMDeutschlands Initiative für gesunde Ernährung und mehr Bewegung. Es handelt sich dabei um eine gemeinsame Initiative von Bund, Ländern und Kommunen zur Verbesserung des Ernährungs- und Bewegungsverhaltens der gesamten deutschen Bevölkerung. Koordiniert wird dieser auf Kabinettsbeschluss von Juni 2008 beruhende Aktionsplan auf Bundesebene in Ernährungsfragen vom BMELV mit Sitz in Bonn.

Siehe auch Bearbeiten

Portal: Essen und Trinken – Übersicht zu Wikipedia-Inhalten zum Thema Essen und Trinken

Literatur Bearbeiten

Deutsch
  • Uwe Spiekermann: Künstliche Kost – Ernährung in Deutschland, 1840 bis heute. 948 Seiten, Göttingen 2018, ISBN 978-3-525-31719-8.
  • aid Infodienst Ernährung, Landwirtschaft, Verbraucherschutz e. V. Bonn (Hrsg.): Ernährung im Fokus. Zeitschrift für Fach-, Lehr- und Beratungskräfte.
  • Klaus Hans Bayer: Was essen Sie denn da? Ein unterhaltsamer Leitfaden für alle, die sich nicht falsch ernähren und dennoch gut essen und schlank sein möchten. Tomus, München 1985, ISBN 3-8231-0302-4.
  • Hans Konrad Biesalski und Peter Grimm: Taschenatlas der Ernährung. Thieme, Stuttgart 1999, ISBN 3-13-115351-2.
  • Claus Leitzmann: Welternährung zu Beginn des 21. Jahrhunderts: Die globale Ernährungssituation. In: Biologie in unserer Zeit. Band 31, Nr. 6, 2001, S. 408–416, doi:10.1002/1521-415X(200111)31:6<408::AID-BIUZ408>3.0.CO;2-H.
  • Gerhard Neumann, Alois Wierlacher, Rainer Wild (Hrsg.): Essen und Lebensqualität: Natur- und kulturwissenschaftliche Perspektiven. Campus, Frankfurt am Main/ New York 2001.
  • Tobias Lechler: Die Ernährung als Einflussfaktor auf die Evolution des Menschen. 2001 (edok01.tib.uni-hannover.de [PDF; 5,3 MB] Dissertation an der Universität Hannover).
  • Jürgen Gerhards, Jörg Rössel: Lebensstile und ihr Einfluss auf das Ernährungsverhalten von Jugendlichen. In: Soziale Welt. Band 53, 2002, S. 323–346.
  • Jürgen Gerhards, Jörg Rössel: Das Ernährungsverhalten von Jugendlichen im Kontext ihrer Lebensstile. Eine empirische Studie. Bundeszentrale für gesundheitliche Aufklärung, Köln 2003.
  • Ibrahim Elmadfa, Claus Leitzmann: Ernährung des Menschen. 4. Auflage. Ulmer, Stuttgart 2004, ISBN 3-8252-8036-5.
  • Claus Leitzmann, Markus Keller, Andreas Hahn: Alternative Ernährungsformen. 2. Auflage. Hippokrates, Stuttgart 2005, ISBN 3-8304-5324-8.
  • Andreas Hahn, Alexander Ströhle, Maike Wolters: Ernährung. Physiologische Grundlagen, Prävention, Therapie. 2. Auflage. Wissenschaftliche Verlagsgesellschaft, Stuttgart 2006, ISBN 3-8047-2092-7.
  • Erika Fink: Ernährung und Diätetik für die Kitteltasche. 2. Auflage. Wissenschaftliche Verlagsgesellschaft, Stuttgart 2008, ISBN 978-3-8047-2442-6.
  • Gunther Hirschfelder, Manuel Trummer: Essen und Trinken. In: Institut für Europäische Geschichte (Mainz) (Hrsg.): Europäische Geschichte Online. 2013, zuletzt abgerufen am 2. Juni 2022.
  • Hans Lichtenfelt: Geschichte der Ernährung. Berlin 1913; Neudrucke (unter dem Titel Die Geschichte der Ernährung) 2012 und 2014.
  • Reay Tannahill: Kulturgeschichte des Essens. Wien 1973.
  • Richard Wrangham: Feuer fangen. Wie uns das Kochen zum Menschen machte – eine neue Theorie der menschlichen Evolution. DVA, München 2009, ISBN 978-3-421-04399-3.
  • Detlef Briesen: Das gesunde Leben: Ernährung und Gesundheit seit dem 18. Jahrhundert. Campus, Frankfurt am Main/ New York 2010, ISBN 978-3-593-39154-0.
  • Johanna Maria van Winter: Kochen und Essen im Mittelalter. In: Bernd Herrmann (Hrsg.): Mensch und Umwelt im Mittelalter. Stuttgart 1986; Neudruck (deklariert als 3. Aufl.) ebenda 1987, S. 88–100.
  • Helmut Wurm: Der Einfluß der Ernährung auf die menschliche Konstitution unter besonderer Berücksichtigung des Nahrungseiweißes. Eine Zusammenstellung von Ansichten, Beobachtungen und Lehrmeinungen von der Antike bis zur Gegenwart. (= Ernährung und Konstitution, 1) In: Würzburger medizinhistorische Mitteilungen. Band 3, 1985, S. 283–320.
  • Helmut Wurm: Ernährungskonstitutionen, die Geschichte gemacht haben. In: Würzburger medizinhistorische Mitteilungen. Band 7, 1989, S. 259–290, und Band 8, 1990, S. 255–277.
  • Helmut Wurm: Über die Notwendigkeit einer angewandten Ernährungsgeschichte. Zusammenhänge zwischen Alltagskosttypen und historischen Konstitutionstypen als interdisziplinäre Forschungsthemen. In: Würzburger medizinhistorische Mitteilungen. Band 9, 1991, S. 291–322.
Englisch
  • Ken Albala: Eating Right in the Renaissance (California Studies in Food and Culture, Band 2), University of California Press, 2002, ISBN 978-0-520-22947-1.
  • Ken Albala: Cooking in Europe, 1250–1650. ABC-CLIO 2006, ISBN 978-0-313-33096-4.
  • Dietary Recommendations for Children and Adolescents: A Guide for Practitioners. Consensus Statement From the American Heart Association. In: Circulation. Band 112. American Heart Association, 2005, S. 2061–2075 (englisch, circ.ahajournals.org).
  • Sidney Wilfred Mintz: Tasting Food, Tasting Freedom: Excursions into Eating, Power, and the Past. Beacon Press, 1997, ISBN 0-8070-4629-9.
  • Raymond Grew: Food in Global History. Westview Press, 2000.
  • The Cambridge World History of Food. Cambridge UP, 2000.
  • Solomon Katz (Hrsg.): The Encyclopedia of Food and Culture. Scribner, New York 2003.
  • Marion Nestle: Food Politics: How the Food Industry Influences Nutrition and Health. Revised and Expanded Tenth Anniversary Edition. University of California Press, 2013, ISBN 978-0-520-27596-6.
  • Laura Shapiro: Something From the Oven: Reinventing Dinner in 1950s America. Viking Adult, 2004, ISBN 0-670-87154-0.
  • Barbara Haber: Culinary History Vs. Food History. In: Andrew F. Smith (Hrsg.): The Oxford companion to American food and drink. Oxford University Press, 2007, S. 179–180.

Weblinks Bearbeiten

Wiktionary: Ernährung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikiquote: Ernährung – Zitate

Einzelnachweise Bearbeiten

  1. Nicolas Bourgon et al.: Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. In: PNAS. Band 117, Nr. 9, 2020, S. 4675–4681, doi:10.1073/pnas.1911744117.
    Die Ernährungsweise fossiler Wirbeltiere rekonstruieren. Auf: mpg.de vom 17. Februar 2020.
  2. Josef Fischer: Ernährung im mykenischen Griechenland. Dissertation (Universität Salzburg). Ridero IT Publishing, Krakau 2017, ISBN 978-83-8104-523-0, S. 9–10, Volltext.
  3. Mark F. Teaford und Peter S. Ungar: Diet and the evolution of the earliest human ancestors. In: PNAS. Band 97, Nr. 25, 2000, S. 13506–13511, doi:10.1073/pnas.260368897, Volltext (PDF).
  4. Peter S. Ungar, Frederick E. Grine und Mark F. Teaford: Diet in Early Homo: A Review of the Evidence and a New Model of Adaptive Versatility. In: Annual Review of Anthropology. Band 35, 2006, S. 209–228, doi:10.1146/annurev.anthro.35.081705.123153, Volltext (PDF).
  5. R. Adriana Hernandez-Aguilar et el.: Savanna chimpanzees use tools to harvest the underground storage organs of plants. In: PNAS. Band 104, Nr. 49, 2007, S. 19210–19213, doi:10.1073/pnas.0707929104.
  6. Alba Motes-Rodrigo et al.: Chimpanzee extractive foraging with excavating tools: Experimental modeling of the origins of human technology. In: PLoS ONE. Band 14, Nr. 5, e0215644. doi:10.1371/journal.pone.0215644.
  7. Greg Laden und Richard Wrangham: The rise of the hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and australopith origins. In: Journal of Human Evolution. Band 49, Nr. 4, 2005, S. 482–498, doi:10.1016/j.jhevol.2005.05.007, Volltext (PDF).
  8. Théo Tacail et al.: Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins. In: Science Advances. Band 5, Nr. 8, 2019, eaax3250, doi:10.1126/sciadv.aax3250.
  9. Mohamed Sahnouni et al.: 1.9-million- and 2.4-million-year-old artifacts and stone tool–cutmarked bones from Ain Boucherit, Algeria. In: Science. Band 362, Nr. 6420, 2018, S. 1297–1301, doi:10.1126/science.aau0008.
    Strongest evidence of early humans butchering animals discovered in North Africa. Auf: sciencemag.org vom 29. November 2018.
  10. Gary J. Sawyer, Viktor Deak: Der lange Weg zum Menschen. Lebensbilder aus 7 Millionen Jahren Evolution. Spektrum, Heidelberg 2008, ISBN 978-3-8274-1915-6, S. 36, 85 (S. 36 (Australopithecus afarensis) und S. 85 (Homo habilis)).
  11. David R. Braun u. a.: Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. In: PNAS. Band 107, Nr. 22, 2010, S. 10002–10007, doi:10.1073/pnas.1002181107.
  12. Alan Walker, Michael R. Zimmerman und Richard Leakey: A possible case of hypervitaminosis A in Homo erectus. In: Nature. Band 296, 1982, S. 248–250, doi:10.1038/296248a0.
  13. Manuel Domínguez-Rodrigo u. a.: Earliest Porotic Hyperostosis on a 1.5-Million-Year-Old Hominin, Olduvai Gorge, Tanzania. In: PLoS ONE. Band 7, Nr. 10, 2012: e46414, doi:10.1371/journal.pone.0046414.
  14. Miki Ben‐Dor, Raphael Sirtoli und Ran Barkai: The evolution of the human trophic level during the Pleistocene. In: American Journal of Physical Anthropology. Online-Vorabveröffentlichung vom 5. März 2021, doi:10.1002/ajpa.24247.
    Humans were apex predators for two million years. Auf: eurekalert.org vom 5. April 2021.
  15. Rasika A. Mathias et al.: Adaptive Evolution of the FADS Gene Cluster within Africa. In: PLoS ONE. Band 7, Nr. 9, e44926, doi:10.1371/journal.pone.0044926.
  16. William R. Leonard: Food for thought: Dietary change was a driving force in human evolution. In: Scientific American. 287, Nr. 6, 2006, S. 106–115.
  17. Alexander Ströhle, Andreas Hahn: Evolutionäre Ernährungswissenschaft und „steinzeitliche“ Ernährungsempfehlungen – Stein der alimentären Weisheit oder Stein des Anstoßes? (PDF; 134 kB) In: Ernährungs-Umschau Original. Band 53, Nr. 1, S. 10–15.
  18. Irit Zohar et al.: Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya’aqov, Israel. In: Nature Ecology & Evolution. Jahrgang 2022, doi:10.1038/s41559-022-01910-z.
    Hominiden in der frühen Altsteinzeit haben bereits vor 780.000 Jahren Fisch gekocht. Auf: idw-online.de vom 15. November 2022.
  19. William R. Leonard, J. Josh Snodgrass, Marcia L. Robertson: Effects of brain evolution on human nutrition and metabolism. In: Annual Review of Nutrition. Band 27, 2007, S. 311–327, doi:10.1146/annurev.nutr.27.061406.093659.
  20. Karen Hardy, Jennie Brand-Miller, Katherine D. Brown, Mark G. Thomas, Les Copeland: The Importance of Dietary Carbohydrate in Human Evolution. In: The Quarterly Review of Biology. Band 90, Nr. 3, September 2015, ISSN 0033-5770, S. 251–268, doi:10.1086/682587, PMID 26591850.
  21. F. Luca, G.H. Perry, A. Di Rienzo: Evolutionary Adaptations to Dietary Changes. In: Annual review of nutrition. Band 30, 21. August 2010, ISSN 0199-9885, S. 291–314, doi:10.1146/annurev-nutr-080508-141048, PMID 20420525, PMC 4163920 (freier Volltext).
  22. James A. Fellows Yates et al.: The evolution and changing ecology of the African hominid oral microbiome. In: PNAS. Band 118, Nr. 20, 2021, e2021655118, doi:10.1073/pnas.2021655118.
  23. James A. Fellows Yates et al.: Supporting Information. The evolution and changing ecology of the African hominid oral microbiome. In: Proceedings of the National Academy of Sciences. 24. Mai 2021, S. 47–50 (pnas.org [PDF]).
    Online verfügbare Zusatzinformationen zu: James A. Fellows Yates u. a.: The evolution and changing ecology of the African hominid oral microbiome. In: Proceedings of the National Academy of Sciences. Band 118, Nr. 20, 18. Mai 2021, doi:10.1073/pnas.2021655118, PMID 33972424.
  24. Karen Hardy et al.: Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. In: Naturwissenschaften. Band 99, Nr. 8, 2012, S. 617–626, doi:10.1007/s00114-012-0942-0.
    Study reveals Neanderthals at El Sidron, Northern Spain, had knowledge of plants’ healing qualities. Auf: eurekalert.org vom 18. Juli 2012.
  25. Sabrina Krief et al.: Flavouring food: the contribution of chimpanzee behaviour to the understanding of Neanderthal calculus composition and plant use in Neanderthal diets. In: Antiquity. Band 89, Nr. 344, 2015, S. 464–471, doi:10.15184/aqy.2014.7.
    Catherine Brahic: Neanderthal chefs spiced up their diet. In: New Scientist. Band 226, Nr. 3017, 2015, S. 14 (Volltext.)
  26. Kim Hill: Hunting and human evolution. In: Journal of Human Evolution. Band 11, Nr. 6, 1982, S. 521–544, doi:10.1016/S0047-2484(82)80107-3.
  27. Richard Wrangham, NancyLou Conklin-Brittain: Cooking as a biological trait. In: Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology. Band 136, S. 35–46, doi:10.1016/S1095-6433(03)00020-5.
  28. Gary J. Sawyer, Viktor Deak: Der lange Weg zum Menschen. Lebensbilder aus 7 Millionen Jahren Evolution. Spektrum Akademischer Verlag, Heidelberg 2008, S. 153.
  29. Gary J. Sawyer, Viktor Deak: Der lange Weg zum Menschen. S. 147.
  30. W. Andrew Barr, Briana Pobiner, John Rowan, Andrew Du, J. Tyler Faith: No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. In: Proceedings of the National Academy of Sciences. Band 119, Nr. 5, 2022, ISSN 0027-8424, doi:10.1073/pnas.2115540119, PMID 35074877 (pnas.org [abgerufen am 26. Januar 2022]).
  31. Sue O’Connor, Rintaro Ono und Chris Clarkson: Pelagic Fishing at 42,000 Years Before the Present and the Maritime Skills of Modern Humans. In: Science. Band 334, Nr. 6059, 2011, S. 1117–1121, doi:10.1126/science.1207703.
  32. Ken Sayers, C. Owen Lovejoy: Blood, Bulbs, and Bunodonts: On Evolutionary Ecology and the Diets of Ardipithecus, Australopithecus, and Early Homo. In: The Quarterly Review of Biology. Band 89, Nr. 4, 2014, S. 319–357, doi:10.1086/678568.
    What was the 'Paleo diet'? There was far more than one, study suggests. Auf: eurekalert.org vom 16. Dezember 2014.
  33. Neil Mann: Meat in the human diet: An anthropological perspective. In: Nutrition & Dietetics. Band 64, s4, 2007, S. S102–S107, doi:10.1111/j.1747-0080.2007.00194.x.
  34. Lyn Wadley, Lucinda Backwell, Francesco d’Errico und Christine Sievers: Cooked starchy rhizomes in Africa 170 thousand years ago. In: Science. Band 367, Nr. 6473, 2020, S. 87–91, doi:10.1126/science.aaz5926.
    Early modern humans cooked starchy food in South Africa, 170,000 years ago. Auf: eurekalert.org vom 2. Januar 2020.
  35. Alexander Ströhle, Andreas Hahn: Ernährung à la Altsteinzeit – Ultima Ratio der Prävention? Deutsche Apothekerzeitung, 2011.
  36. Alexander Ströhle, Andreas Hahn: Evolutionäre Ernährungswissenschaft und „steinzeitliche“ Ernährungsempfehlungen – Stein der alimentären Weisheit oder Stein des Anstoßes? (PDF; 167 kB) In: Ernährungs-Umschau Original. Band 53, Nr. 2, 2006, S. 52–58.
  37. Jennifer C. Chen et al.: Stable isotope chemistry reveals plant-dominant diet among early foragers on the Andean Altiplano, 9.0–6.5 cal. ka. In: PLoS ONE. Band 19, Nr. 1, 2024, e0296420, doi:10.1371/journal.pone.0296420.
    Steinzeitmenschen jagten vor allem Kartoffeln. Auf: spektrum.de vom 26. Januar 2024.
  38. a b c I. Elmadfa, C. Leitzmann: Ernährung des Menschen. 4. Auflage. Eugen Ulmer, 2004, ISBN 3-8252-8036-5.
  39. Mark Nathan Cohen und George J. Armelagos: Paleopathology at the Origins of Agriculture. Academic Press, 1984, ISBN 0-12-179080-0.
  40. Amanda Mummert et al.: Stature and robusticity during the agricultural transition: Evidence from the bioarchaeological record. In: Economics & Human Biology. Band 9, Nr. 3, 2011, S. 284–301, doi:10.1016/j.ehb.2011.03.004.
  41. Christina J. Adler et al.: Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. In: Nature Genetics. Band 45, Nr. 4, 2013, S. 450–455, doi:10.1038/ng.2536. ISSN 1546-1718. PMID 23416520.
  42. Vgl. Claus Leitzmann: Veganismus. Grundlagen, Vorteile, Risiken. C.H. Beck, München 2018, ISBN 978-3-406-72684-2, Abschnitt „Die artgerechte Ernährung des Menschen“.
  43. Claus Leitzmann, Markus Keller: Vegetarische und vegane Ernährung. 4., überarbeitete Auflage. UTB, 2020, ISBN 978-3-8252-5023-2, S. 36 und 44.
  44. Claus Leitzmann, Markus Keller: Vegetarische und vegane Ernährung. 4., überarbeitete Auflage. UTB, 2020, ISBN 978-3-8252-5023-2, S. 39.
  45. Irmgard Bitsch, Trude Ehlert, Xenia von Ertzdorff (Hrsg.): Essen und Trinken in Mittelalter und Neuzeit. Vorträge eines interdisziplinären Symposions vom 10.–13. Juni 1987 an der Justus-Liebig-Universität Gießen. Sigmaringen 1987.
  46. Vollwertig essen und trinken nach den 10 Regeln der DGE. Auf: dge.de, zuletzt eingesehen am 3. Juli 2020.
  47. Reducing global food system emissions key to meeting climate goals In: phys.org (englisch) 
  48. Michael A. Clark, Nina G. G. Domingo, Kimberly Colgan, Sumil K. Thakrar, David Tilman, John Lynch, Inês L. Azevedo, Jason D. Hill: Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. In: Science. 370. Jahrgang, Nr. 6517, 6. November 2020, ISSN 0036-8075, S. 705–708, doi:10.1126/science.aba7357, PMID 33154139 (englisch, sciencemag.org).
  49. S. Bilsborough, N. Mann: A review of issues of dietary protein intake in humans. In: Int J Sport Nutr Exerc Metab. 16(2), Apr 2006, S. 129–152.
  50. a b Referenzwerte für die die Nährstoffzufuhr. Auf der Website der Deutschen Gesellschaft für Ernährung.
  51. Kohlenhydrate, Ballaststoffe. Abgerufen am 4. Mai 2021.
  52. Omega-3 Fatty Acids. (Memento vom 9. Juli 2008 im Internet Archive). Im Original publiziert auf der Website des University of Maryland Medical Center, 2007.
  53. Frank Sacks: Omega-3 Fatty Acids: An Essential Contribution. Department of Nutrition, Harvard School of Public Health, abgerufen am 2. Juni 2022 (englisch).
  54. Omega-3 Supplements in Question. In: Berkeley Wellness. University of California, Berkeley, 9. März 2014, abgerufen am 6. August 2014 (englisch).
  55. a b c d e f Deutsche Akademie für Ernährungsmedizin: Rationalisierungsschema 2004. (PDF) Archiviert vom Original (nicht mehr online verfügbar) am 23. Juli 2007; abgerufen am 2. Juni 2022.
  56. P. R. Trumbo, T. Shimakawa: Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. In: International Life Sciences Institute (Hrsg.): Nutritional Review. Band 69, Nr. 5, Mai 2011, S. 270–278, doi:10.1111/j.1753-4887.2011.00389.x (englisch).
  57. Laura Bravo: Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. In: Nutrition Reviews. Band 56, Nr. 11. Advanced Research Press, New York 1998, S. 317–333, doi:10.1111/j.1753-4887.1998.tb01670.x (englisch).
  58. Rüdiger Wehner, Walter Gehring: Zoologie. 23. Auflage. Thieme, Stuttgart 1995, ISBN 3-13-367423-4, S. 275–276.
  59. Peter Schauder: Ernährungsmedizin. Elsevier, 2006.
  60. Claus Leitzmann, Andreas Hahn: Vegetarische Ernährung. 1. Auflage. UTB, 1996, ISBN 3-8252-1868-6, S. 224 ff.
  61. S. Boyd Eaton, Melvin Konner, Marjorie Shostak: Stone Agers in the Fast Lane: Chronic Degenerative Diseases in Evolutionary Perspective. In: The American Journal of Medicine. Band 84, 1988, S. 739–749, PMID 3135745 (direct-ms.org [PDF; 1,3 MB]).
  62. Probier mal, was da krabbelt. Der praktische Insekten Food Ratgeber. (Memento vom 28. Juli 2016 im Internet Archive). Autoren: Desirée Bea Cimbollek, Ralf Krause, Thomas S. Linke; Berlin 2014.
  63. Ernährungssysteme: Hungrig nach Wandel. In: Welthungerhilfe. Abgerufen am 30. Januar 2023.