Hauptmenü öffnen
Emissionsbudget und nötige Pfade zur Emissionsreduktion, um das im Übereinkommen von Paris vereinbarte Zwei-Grad-Ziel ohne negative Emissionen einzuhalten, abhängig vom Emissionspeak[1]

Das CO2-Budget, auch Kohlenstoffbudget, Carbon Budget oder Emissionsbudget oder auch -kredit, bezeichnet im Kontext von Klimapolitik und globalen Klimaschutzmaßnahmen die Menge der CO2-Emissionen aus anthropogenen Quellen, die seit Beginn der Industrialisierung freigesetzt wurde bzw. noch freigesetzt werden kann, um mit einer Wahrscheinlichkeit von 50 bzw. 66 % eine Globale Erwärmung über eine definierte Grenze hinaus zu vermeiden.[2] Im Kontext der klimawissenschaftlichen Darstellung des Kohlenstoffkreislaufs versteht man unter einem CO2- bzw. Kohlenstoffbudget eine Kohlenstoffbilanz, also eine budgetmäßige Aufstellung der Kohlenstoffflüsse von und zu Kohlenstoffspeichern wie etwa der Atmosphäre.[3]

Das CO2-Budget im Sinn einer Restmenge noch emittierbarer Treibhausgase – gelegentlich auch als „verbleibender atmosphärischer Deponieraum“ verbildlicht[4] – ergibt sich aus dem Umstand, dass ein annähernd linearer Zusammenhang zwischen der kumulierten Gesamtmenge an emittierten Treibhausgasen und der dadurch verursachen Temperaturerhöhung besteht. Daher muss für einen wirksamen Klimaschutz die kumulierte Menge an ausgestoßenen Treibhausgasen limitiert werden.[5][6] Um dies zu erreichen, muss die gesamte Energiewirtschaft vollständig dekarbonisiert werden.[7] Entscheidend für das Ausmaß des Klimawandels ist also nicht der gegenwärtige Ausstoß an Treibhausgasen, wie oft fälschlich angenommen wird, sondern die Gesamtmenge an Emissionen, die über die Zeit anfällt. Daraus ergibt sich, dass ein Hinauszögern des Klimaschutzes auf einen späteren Zeitpunkt zu einem stärkeren Klimawandel führt.[8]

Der Weltklimarat gibt das globale CO2-Restbudget in seinem 2018er Sonderbericht mit 420 Gigatonnen an, wenn das 1,5-Grad-Ziel (bezüglich der globalen Luftdurchschnittstemperatur an der Oberfläche) mit 66 % Wahrscheinlichkeit erreicht werden soll. Bei gleichbleibendem Ausstoß wäre dieses Budget in neun bis zehn Jahren aufgebraucht.[9][10] 2018 wurden weltweit rund 42 Gigatonnen CO2 emittiert.[11]

Für Deutschland, das als Industrieland höhere Pro-Kopf-Emissionen als der Weltdurchschnitt produziert, ermittelte der Klimaforscher Stefan Rahmstorf – ausgehend von eben diesen Zahlen und 67 % Wahrscheinlichkeit für die Begrenzung der Erderwärmung gemäß Übereinkommen von Paris auf maximal 1,75 Grad – ein Restbudget von 9,7 Gigatonnen. Von diesem Restbudget, das Anfang 2016 zur Verfügung stand, seien bis Anfang 2019 bereits 2,4 Gigatonnen verbraucht wurden (zirka 0,8 Gigatonnen pro Jahr), sodass mit Stand Anfang 2019 noch 7,3 Gigatonnen zur Verfügung stünden. Um das Pariser Klimaschutzabkommen einzuhalten, müsste Deutschland beispielsweise seine Emissionen jedes Jahr linear um 6 % reduzieren und bis 2036 Nullemissionen erreichen.[12] Der Sachverständigenrat für Umweltfragen kommt zu ähnlichen Werten und nennt für 2020 unter den gleichen Annahmen ein Restbudget von 6,6 Mrd. Tonnen für die Begrenzung der Erderwärmung auf 1,75 Grad. Dieses Budget wäre bei konstanten Emissionen auf gegenwärtigem Niveau 2028 aufgebracht, bei einer linearen Reduktion auf Nullemissionen im Jahr 2037.[13]

AusgangslageBearbeiten

Im Jahr 2014 gab der Weltklimarat (englisch Intergovernmental Panel on Climate Change, abgekürzt IPCC) das gesamte Budget mit 2.900 Gigatonnen CO2 an, wenn die Erwärmung mit 66-prozentiger Wahrscheinlichkeit unterhalb von 2 °C gehalten werden soll, wobei davon bis 2011 bereits 1.900 Gigatonnen CO2 ausgestoßen wurden.[2] Wenn das Zwei-Grad-Ziel mit einer Wahrscheinlichkeit von mehr als 50 % erreicht werden soll, dürfen im Zeitraum 2011 bis 2050 maximal zwischen 870 und 1.240 Gigatonnen Kohlenstoffdioxid freigesetzt werden. Umgerechnet auf die Reserven bedeutet dies, dass im globalen Kontext beispielsweise etwa ein Drittel der Ölreserven, die Hälfte der Erdgas­reserven und mehr als 80 Prozent der Kohle­reserven nicht verbraucht werden dürfen.[14]

Ende 2016 lag das Restbudget, bei dem mit 66 % Wahrscheinlichkeit das Zwei-Grad-Ziel eingehalten werden würde, nach verschiedenen Schätzungen zwischen 390 und 940 Gigatonnen CO2 (im Mittel 760 Gigatonnen), beim Anvisieren des 1,5 °C-Zieles mit 50 % Wahrscheinlichkeit zwischen −48 und 167 Gigatonnen (im Mittel 59 Gigatonnen).[15]

Je nach Modell bezieht sich das Restbudget auf einen Zeitraum bis Mitte des Jahrhunderts, danach kompensieren die IPCC-Szenarien den ansonsten fortlaufenden Temperaturanstieg mit negativen Emissionstechnologien.[16]

CO2 gegenüber CO2-ÄquivalentBearbeiten

Das Treibhauspotenzial verschiedener Treibhausgase wird üblicherweise in CO2-Äquivalenten angegeben. Das IPCC-Klimamodell geht anders vor und unterstellt für die übrigen Treibhausgase wie Methan und Lachgas ein bestimmtes Reduktionsszenario.[17][18] Ursache hierfür ist, dass CO2 sowohl das mengenmäßig wichtigste Treibhausgas als auch das am schnellsten und einfachsten reduzierbare Treibhausgas ist. Im Unterschied zu vielen weiteren Treibhausgasen bleibt es außerdem für eine lange Zeit in der Atmosphäre.[18] Die genaue Verweildauer ist jedoch schwierig zu bestimmen: Der IPCC gibt für CO2 im Gegensatz zu den übrigen Treibhausgasen keine mittlere Verweildauer an, schreibt jedoch, dass ein bestimmter Anteil (ca. 20 %) des emittierten CO2 viele Jahrtausende in der Atmosphäre verbleibt.[19] Die mittlere Verweildauer in der Atmosphäre liegt laut Umweltbundesamt bei ca. 120 Jahren.[20]

Generell wird in den Klimamodellen angenommen, dass sich Emissionen durch die Energieerzeugung und durch die Industrie schneller reduzieren lassen, als die Emissionen aus Wald- und Landwirtschaft.[21]

CO2-Konzentration in der AtmosphäreBearbeiten

 
Die Keeling-Kurve zeigt die Zunahme des Kohlenstoffdioxidanteils in der Atmosphäre, gemessen am Mauna Loa

Bei der Betrachtung der Kohlendioxidwerte müssen natürliche und menschliche Quellen unterschieden werden. Zwar wird sehr viel Kohlenstoffdioxid durch natürliche Prozesse freigesetzt, beispielsweise durch Abbau von Biomasse, dem steht jedoch eine praktisch gleich große natürliche Fixierung durch Pflanzen gegenüber. Der natürliche Stoffkreislauf ist somit geschlossen. Durch Verbrennung fossiler Energieträger sowie weitere Eingriffe des Menschen wie Brandrodung wird jedoch zusätzliches Kohlenstoffdioxid in die Atmosphäre abgegeben, wodurch der Anteil in der Atmosphäre steigt.[22]

Dieses zusätzlich vom Menschen ausgestoßene CO2 wird zwar teilweise gebunden, jedoch bleiben gut 40 % der bisherigen menschengemachten CO2-Emissionen langfristig in der Atmosphäre, was dort die CO2-Konzentration ansteigen lässt und den Treibhauseffekt erhöht. Der Rest wird in Pflanzen und Böden sowie im Ozean gespeichert und damit der Atmosphäre wieder entzogen.[2] Der Anstieg der Kohlendioxidkonzentration in der Erdatmosphäre macht nur ca. 45 % der Gesamtemissionen aus; je 27 % werden von Ozeanen und Landökosystemen aufgenommen. Diese fungieren somit als Kohlenstoffsenken. Ohne diese Wirkung wäre die Kohlendioxidkonzentration von rund 280 ppm (Millionstel, genauer: Teilchen pro Million Luftteilchen, englisch parts per million, abgekürzt ppm) vor der Industrialisierung um rund 250 ppm auf rund 530 ppm bis 2015 gestiegen, durch diesen Effekt nahm sie tatsächlich jedoch nur auf rund 400 ppm zu.[23]

Im Februar 2015 erreichte sie laut der National Oceanic and Atmospheric Administration (NOAA) – der US-Behörde für Wetter- und Meeresforschung – einen Wert von 403 Millionstel.[24] Bis zu einer Grenze von 450 ppm wird damit gerechnet, dass die Erderwärmung auf zwei Grad gegenüber der vorindustriellen Zeit begrenzt werden kann. An der Mauna-Loa-Messstation in Hawaii wurde 2015 erstmals ein jährlicher Anstieg um 3,05 Millionstel verzeichnet.[24][25]

Aufgrund der langsamen Abbauprozesse wird sich die Konzentration von atmosphärischem CO2 langfristig weiterhin erhöhen, auch wenn die Emissionen im Vergleich zum heutigen Niveau erheblich vermindert werden.[19] Wissenschaftler von der University of East Anglia erwarten den Höhepunkt der Klimawirksamkeit von CO2 nach Ablauf von zehn Jahren nach der Emission und rechnen mit einer Wirkungsdauer von mehr als 100 Jahren.[26]

Zeitpunkt der Null-EmissionBearbeiten

Das Umweltprogramm der Vereinten Nationen (UNEP) hat im Jahr 2015 empfohlen, einen Zeitraum zwischen 2060 und 2075 festzulegen, bis zu dem die CO2-Emissionen „unter dem Strich“ auf null sinken sollten.[27][28] Um das bei der UN-Klimakonferenz in Paris 2015 gesteckte Ziel, die Erderwärmung auf 1,5 °C zu begrenzen erreichen zu können, muss die Welt die Nettotreibhausgasemissionen zwischen 2045 und 2060 auf null zurückfahren und damit einen sehr ambitionierten Klimaschutz betreiben. Ebenfalls wurde auf die Notwendigkeit von CCS-Maßnahmen, insbesondere der BEECS-Technik (Biomasseverbrennung mit Kohlenstoffdioxidabscheidung) oder eine erhöhte CO2-Aufnahme durch eine veränderte Landbewirtschaftung (z. B. Anpflanzen von Wäldern) während der zweiten Jahrhunderthälfte hingewiesen. Zudem schließt sich das Fenster zum Erreichen dieses Zieles schnell (Stand 2015).[29]

Viele Berechnungen berücksichtigen noch nicht, dass der Permafrost schneller schmilzt als angenommen und dadurch mehr Klimagase freisetzt.[30][31]

Das NewClimate Institut gibt unter Berücksichtigung der Beschlüsse von Paris den Ausstiegs-Zeitpunkt mit 2035 an, sofern auf die Entfernung von Kohlendioxid aus der Atmosphäre verzichtet werden soll.[21] Szenarien, die unter 1,5 Grad bleiben und keine negative Emissionen berücksichtigen, gibt es zurzeit nicht.[21]

Soll das 1,5-Grad-Ziel ohne Einsatz der CCS-Technik erreicht werden, muss die Verbrennung fossiler Energieträger in Deutschland bis ca. 2040 komplett eingestellt werden und die Energieversorgung – d. h. Strom, Wärme und Verkehr – in diesem Zeitraum vollständig auf erneuerbare Energien umgestellt werden.[32] Eine Studie des NewClimate Institutes nennt neben der deutlichen Beschleunigung der Energiewende einen früheren Ausstieg aus der Kohleverstromung bis 2025. In diesem Szenario müsste die Welt bis zum Jahr 2035 komplett aus der Verbrennung fossiler Rohstoffe aussteigen.[21]

Nach Berechnungen des Mercator Research Institute on Global Commons and Climate Change muss die Null-Emission im Jahr 2035 umgesetzt sein, damit das 2-Grad-Ziel noch erreicht werden kann. Um das 1,5 °C-Ziel zu erreichen, müsste die Null-Emission bereits vor 2020 umgesetzt werden.[33][34]

CO2-Budget pro Jahr und pro Kopf versus Reduktions-PfadBearbeiten

Oft wird berechnet, in wie vielen Jahren das CO2-Budget unter bestimmten Annahmen „verbraucht“ sein würde.[35] Bei unveränderten Emissionen würde beispielsweise das Kohlenstoffbudget für das Zwei-Grad-Ziel nach 20 bis 30 Jahren, d. h. zwischen 2035 und 2045, aufgebraucht sein.[36] Zudem wird das globale CO2-Budget häufig durch die Weltbevölkerung und die verbleibenden Jahre bis zum Erreichen der Null-Emission dividiert und so eine „erlaubte“ Pro-Kopf-Emission von zum Beispiel 2,7 t CO2 pro Jahr berechnet.[35][37]

Das Beratungshaus PricewaterhouseCoopers (PWC) rechnet vor, dass die CO2-Emissionen jährlich um sechs Prozent sinken müssten, um die Klimaziele zu erreichen.[37][38] Das ist eine Größenordnung, wie sie bereits 1997 durch das Kyoto-Protokoll völkerrechtlich verbindlich für die Industrienationen verabschiedet wurde, mit dem Unterschied, dass die Kyoto-Ziele innerhalb von 4 Jahren erfüllt werden sollten.

Daneben schlägt ein Klimaexperte aus der Schweiz vor, das Budget selbst als Pfad zu definieren, der vorgibt, in welchem Maße die Emissionen über einen Zeitraum reduziert werden müssten.[39]

Auch Reduktionsziele zu bestimmten Zeitpunkten würden dem Sachverhalt weniger gerecht, so Manfred Sargl von der Universität der Bundeswehr. Entscheidend sei alleine die Summe der Emissionen in den Jahren bis zum kompletten CO2-Ausstieg.[18]

Verteilung des CO2-Restbudgets auf LänderBearbeiten

Für die Verteilung des verbleibenden Emissionsrechte auf Staaten wurde eine Vielzahl von Verfahren der Lastenteilung (burden-sharing) bzw. Anstrengungsteilung (effort-sharing) vorgeschlagen.

Beim sogenannten „Regensburger Modell“ wird zunächst von den tatsächlichen Emissionen eines Landes ausgegangen. Danach wird schrittweise auf eine gleiche Pro-Kopf-Verteilung umgestellt. Damit versucht das Modell Gerechtigkeit mit politischer Pragmatik zu kombinieren, setzt auf Strukturwandel und vermeidet Strukturbrüche.[17][18][40]

Ein ähnliches Verfahren wird durch die Begriffe Kontraktion und Konvergenz beschrieben, wobei aber Entwicklungsländern vorübergehend – bis zum Konvergenzzeitpunkt – höhere Emissionen zugestanden werden.

Weitere Vorschläge setzen auf andere Prinzipien:[21]

  • an den Kosten orientiert wird nach der Lösung mit den geringsten Kosten gesucht
  • an der Gerechtigkeit orientiert – mit Berücksichtigung der bisherigen Emissionen
  • an der Gerechtigkeit orientiert – ohne Berücksichtigung der bisherigen Emissionen

Die Europäische Kommission hat im Juli 2016 eine Gesetzgebungs-Initiative auf den Weg gebracht, die gemeinsamen CO2-Einsparungsziele auf der Basis des Pro-Kopf-Einkommens auf die EU-Länder zu verteilen.

Der WBGU empfiehlt zur Überprüfung der Dekarbonisierungs-Fahrpläne die Einrichtung einer unabhängigen, internationalen Weltklimabank.[35]

Überschießen und negative EmissionenBearbeiten

Die Mehrzahl der Klimaszenarien, die untersuchen, wie das Zwei-Grad-Ziel eingehalten werden kann, geht davon aus, dass es während des 21. Jahrhunderts zum sog. Überschießen kommt. Das bedeutet, dass zunächst mehr Treibhausgase ausgestoßen werden, als zum Erreichen der Klimaziele erlaubt sind, gegen Ende des 21. Jahrhunderts dann aber wieder Kohlenstoffdioxid aus der Erdatmosphäre entnommen wird, sodass das Klimaziel bis zum Jahr 2100 wieder eingehalten werden kann.[41] Daher wird weltweit nach Wegen gesucht, Kohlenstoff zu binden und so der Atmosphäre zu entziehen.[42]

Eines der Konzepte sieht vor (Holz-)Kohle bzw. aus organischen Abfallstoffen gewonnene Pflanzenkohle nicht zu verbrennen, sondern landwirtschaftlich genutzten Böden beizumischen und sie so für mehrere Tausend Jahre zu binden. Diese „Kohledüngung“ (Terra preta) hat darüber hinaus den Vorteil, dass der Boden Wasser und Nährstoffe besser zurückhalten kann und dass die landwirtschaftlichen Erträge verbessert werden können. Das Potenzial, die CO2-Belastung der Atmosphäre durch Kohledüngung zu reduzieren, wird auf knapp zwei Milliarden Tonnen CO2 pro Jahr geschätzt.[43][44]

Fast alle Szenarien des Weltklimarats enthalten die Annahme, dass in der zweiten Hälfte des Jahrhunderts Carbon-Capture-and-Storage-Technologien (CCS) angewendet werden. Bei den 1,5 °C-Szenarien liegt die Notwendigkeit zur Nutzung solcher Technologien noch höher.[45][46] Das Setzen auf negative Emissionen birgt zugleich große Risiken. Zwar besteht durchaus die Möglichkeit, dass solche Strategien erfolgreich sind. Bei einem ebenso möglichen Scheitern besteht jedoch die Gefahr, dass zukünftige Generationen von erheblichen Klimafolgen, hohen Bewältigungskosten und inakzeptablen (Ziel-)Konflikten betroffen sind. Zudem können während des temporär geplanten Überschreitens des Temperaturziels Kippelemente im Erdsystem ausgelöst werden, die dann permanente Folgen nach sich ziehen. Beispiele hierfür sind die Destabilisierung von Eisschilden, die einen starken und irreversiblen Meeresspiegelanstieg zur Folge hätten, oder die Freisetzung großer Treibhausgasmengen in der Arktis oder dem Amazonasgebiet, die anschließend wiederum die globale Erwärmung verstärken würden.[47]

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. Christiana Figueres u. a.: Three years to safeguard our climate. In: Nature. Band 546, 2017, S. 593–595, doi:10.1038/546593a.
  2. a b c Klimaänderung 2014 Synthesebericht Zusammenfassung für politische Entscheidungsträger, Deutsche IPCC-Koordinierungsstelle, Bonn, 2016
  3. Matthias Schaefer: Bilanz. In: Wörterbuch Ökologie. Spektrum Akademischer Verlag, September 2011.
  4. Ottmar Edenhofer, Brigitte Knopf und Gunnar Luderer: Globale Klimapolitik jenseits harmloser Utopien. In: Wirtschaftspolitische Blätter. Nr. 4, 2009.
  5. Joeri Rogelj et al.: Paris Agreement climate proposals need a boost to keep warming well below 2 °C. In: Nature. Band 534, 2016, S. 631–639, doi:10.1038/nature18307.
  6. Ottmar Edenhofer, Susanne Kadner, Jan Minx: Ist das Zwei-Grad-Ziel wünschenswert und ist es noch erreichtbar? Der Beitrag der Wissenschaft zu einer politischen Debatte. In: Jochem Marotzke, Martin Stratmann (Hrsg.): Die Zukunft des Klimas. Neue Erkenntnisse, neue Herausforderungen. Ein Report der Max-Planck-Gesellschaft. Beck, München 2015, S. 69–92, hier S. 85.
  7. Peter U. Clark et al.: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. In: Nature Climate Change. Band 6, 2016, S. 360-269, doi:10.1038/NCLIMATE2923.
  8. Gregor Hagedorn et al.: The concerns of the young protesters are justified. A statement by Scientists for Future concerning the protests for more climate protection. In: GAIA. Band 28, Nr. 2, 2019, S. 79–87, doi:10.14512/gaia.28.2.3.
  9. So schnell tickt die CO2-Uhr, Mercator Research Institute on Global Commons and Climate Change, o. J.
  10. Schätzungen des verbleibenden CO2-Budgets täuschen über die Herausforderungen in der Klimapolitik hinweg, u. a. von Wilfried Rickels, Kieler Institut für Weltwirtschaft, November 2018
  11. So schnell tickt die CO2-Uhr, Mercator Research Institute on Global Commons and Climate Change, o. J.
  12. Wie viel Kohlendioxid bleibt Deutschland noch?. In: Spektrum.de, 2. April 2019. Abgerufen am 3. April 2019.
  13. Für die Umsetzung ambitionierter Klimapolitik und Klimaschutzmaßnahmen. Offener Brief des Sachverständigenrates für Umweltfragen. Abgerufen am 16. September 2019.
  14. Christophe McGlade, Paul Ekins: The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. In: Nature. Band 517, 2015, S. 187–190, doi:10.1038/nature14016 (englisch).
  15. Vicki Duscha, Alexandra Denishchenkova, Jakob Wachsmuth: Achievability of the Paris Agreement targets in the EU: demand-side reduction potentials in a carbon budget perspective. In: Climate Policy. 25. Mai 2018, doi:10.1080/14693062.2018.1471385 (englisch).
  16. Schätzungen des verbleibenden CO2-Budgets täuschen über die Herausforderungen in der Klimapolitik hinweg, u. a. von Wilfried Rickels, Kieler Institut für Weltwirtschaft, November 2018
  17. a b Das CO2-Budget, klima-retten.info, o. J.
  18. a b c d Das CO2-Budget, klima-retten.info, abgerufen am 19. Juli 2016
  19. a b Frage 10.3: Wenn die Treibhausgas-Emissionen verringert werden, wie schnell nehmen ihre Konzentrationen in der Atmosphäre ab? (Memento des Originals vom 19. Juli 2016 im Internet Archive)   Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.de-ipcc.de, Deutsche IPCC-Koordinierungsstelle, abgerufen am 19. Juli 2016
  20. Die Treibhausgase, Umweltbundesamt (UBA), 15. Januar 2016
  21. a b c d e Was bedeutet das Pariser Abkommen für den Klimaschutz in Deutschland?, von Niklas Höhne, Takeshi Kuramochi, Sebastian Sterl und Lina Röschel, NewClimate Institute for Climate Policy and Global Sustainability, Hrsg.: Greenpeace, Februar 2016
  22. Hermann-Josef Wagner, Was sind die Energien des 21. Jahrhunderts?, Frankfurt am Main 2011, S. 180.
  23. Markus Reichstein: Universell und Überall. Der terrestrische Kohlenstoffkreislauf im Klimasystem. In: Jochem Marotzke, Martin Stratmann (Hrsg.): Die Zukunft des Klimas. Neue Erkenntnisse, neue Herausforderungen. Ein Report der Max-Planck-Gesellschaft. Beck, München 2015, ISBN 978-3-406-66968-2, S. 123–136, insb. S. 127.
  24. a b 2015 bringt Rekord beim CO2-Anstieg (Memento vom 29. März 2016 im Internet Archive), Wirtschaftsblatt, 22. März 2016
  25. Annual Mean Growth Rate for Mauna Loa, Hawaii, Earth System Research Laboratory, Juli 2016
  26. CO2-Emissionen könnten 2015 erstmals leicht sinken, scinexx.de, 8. Dezember 2015
  27. Emissions Gap Report 2015 – Executive Summary, UNEP, 2015
  28. Launch of UNEP Emissions Gap Report Executive Summary, UNEP, 6. November 2015
  29. Joeri Rogelj et al.: Energy system transformations for limiting end-of-century warming to below 1.5 °C. In: Nature Climate Change. Band 5, 2015, S. 519–527, doi:10.1038/NCLIMATE2572 (englisch).
  30. Christian Mihatsch: Klimaneutralität kommt 2050 zwei Jahrzehnte zu spät. In: Klimareporter. 17. August 2019, abgerufen am 20. August 2019 (deutsch).
  31. Robert McSweeney: Permafrost and wetland emissions could cut 1.5C carbon budget ‘by five years’. In: CarbonBrief. 9. Juli 2018, abgerufen am 11. September 2019 (englisch).
  32. Volker Quaschning: Sektorkopplung durch die Energiewende. Anforderungen an den Ausbau erneuerbarer Energien zum Erreichen der Pariser Klimaschutzziele unter Berücksichtigung der Sektorkopplung. Hochschule für Technik und Wirtschaft Berlin, 20. Juni 2016. Abgerufen am 21. Juli 2016.
  33. CO₂-Budget womöglich schon aufgebraucht, klimaretter.info, 11. Januar 2017
  34. That’s how fast the carbon clock is ticking, Mercator Research Institute on Global Commons and Climate Change
  35. a b c Der WBGU-Budgetansatz, Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), 2009
  36. Ottmar Edenhofer, Susanne Kadner, Jan Minx: Ist das Zwei-Grad-Ziel wünschenswert und ist es noch erreichtbar? Der Beitrag der Wissenschaft zu einer politischen Debatte. In: Jochem Marotzke, Martin Stratmann (Hrsg.): Die Zukunft des Klimas. Neue Erkenntnisse, neue Herausforderungen. Ein Report der Max-Planck-Gesellschaft. Beck, München 2015, S. 69–92, hier S. 78.
  37. a b CO2-Budget der Erde bald ausgereizt, global°, Magazin für nachhaltige Zukunft, o. J.
  38. Klimaschutz: CO2-Budget für 2-Grad-Ziel schon 2034 statt 2100 erschöpft?, Institut der Regenerativen Energiewirtschaft (IWR), 6. November 2013
  39. Das Stromsystem der Zukunft ist erneuerbar und flexibel, Meteo Zürich, 20. Juni 2016
  40. The Regensburg Mode, Klima-Rechner
  41. Vgl. Ottmar Edenhofer, Susanne Kadner, Jan Minx: Ist das Zwei-Grad-Ziel wünschenswert und ist es noch erreichtbar? Der Beitrag der Wissenschaft zu einer politischen Debatte. In: Jochem Marotzke, Martin Stratmann (Hrsg.): Die Zukunft des Klimas. Neue Erkenntnisse, neue Herausforderungen. Ein Report der Max-Planck-Gesellschaft. Beck, München 2015, S. 69–92, insb. S. 79f.
  42. CO2-Filter: Ein Kescher fürs Treibhausgas, von Ralph Diermann, Spiegel-online, 10. Januar 2016
  43. Zwei-Grad-Ziel gibt es nur "negativ", Klimaretter.info, 21. November 2015
  44. "Negative CO2-Emissionen" sind möglich, Science-orf.at, 19. Februar 2013
  45. Was kommt nach dem Abkommen von Paris? Chancen und potentielle Risiken, von Barbara Unmüßig, Heinrich-Böll-Stiftung, 21. April 2016
  46. Regierung: Kein Konzept für 1,5 Grad, von Benjamin von Brackel und Sandra Kirchner, Klimaretter.info, 23. Februar 2016
  47. Christopher B. Field, Katharine J. Mach: Rightsizing carbon dioxide removal. Betting the future on planetary-scale carbon dioxide removal from the atmosphere is risky. In: Science. Band 356, Nr. 6339, 2017, S. 706 f., doi:10.1126/science.aam9726.