Kählermannigfaltigkeit
In der Mathematik bezeichnet man mit Kählermannigfaltigkeit (nach Erich Kähler) eine glatte Mannigfaltigkeit zusammen mit einer komplexen Struktur und einer riemannschen Metrik (im Sinne einer riemannschen Mannigfaltigkeit), die miteinander verträglich sind.
Der Begriff der Kählermannigfaltigkeit findet Anwendung in der Darstellungstheorie von Lie-Gruppen und ist ein zentraler Begriff der geometrischen Quantisierung. Ein auch in der Stringtheorie wichtiges Beispiel für Kählermannigfaltigkeiten sind Calabi-Yau-Mannigfaltigkeiten.
Inhaltsverzeichnis
DefinitionBearbeiten
Sei eine glatte Mannigfaltigkeit, eine komplexe Struktur, das heißt eine glatte Abbildung mit und eine riemannsche Metrik, wobei den Raum der glatten Vektorfelder auf bezeichnet. Das Tripel heißt Kählermannigfaltigkeit, wenn
für alle Vektorfelder gilt und
- eine symplektische Form
ist.
Die durch
definierte 2-Form heißt dann die Kähler-Form von .
Falls der Ricci-Tensor proportional zur riemannschen Metrik ist, so spricht man auch von einer Kähler-Einstein- (oder Einstein-Kähler)-Mannigfaltigkeit. Für weitere Details vgl. den Artikel einsteinsche Mannigfaltigkeit.
Siehe auchBearbeiten
WeblinksBearbeiten
- A.L. Onishchik: Kähler manifold. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8 (online).
LiteraturBearbeiten
- Alan Huckleberry, Tilman Wurzbacher (Hrsg.): Infinite Dimensional Kähler Manifolds (= DMV-Seminar. Bd. 31). Birkhäuser Verlag, Basel u. a. 2001, ISBN 3-7643-6602-8.
- Andrei Moroianu: Lectures on Kähler Geometry (= London Mathematical Society Student Texts. Bd. 69). Cambridge University Press, Cambridge 2007, ISBN 978-0-521-68897-0.