Lineare Separierbarkeit (auch Trennbarkeit, oder Klassifizierbarkeit) bezeichnet in der Mathematik die Eigenschaft zweier Relationen (Mengen aus -Tupeln), für die eine Hyperebene (bzw. eine lineare Diskriminanzfunktion) existiert, die diese im -dimensionalen Vektorraum voneinander trennt.

Im 2-dimensionalen Raum bedeutet dies, dass zwischen zwei linear separierbaren Punktemengen eine Gerade gelegt werden kann.

Formale Definition Bearbeiten

Zwei Teilmengen   heißen linear separierbar, wenn   reelle Zahlen   existieren, so dass für alle   die Ungleichungen

 

gelten.[1] Die Punkte   aus  , für die   gilt, bilden die separierende Hyperebene.

Linear separierbare Funktionen Bearbeiten

 
Lineare Separierbarkeit von Funktionen

Binäre Funktionen (d. h.   mit  ) heißen linear separierbar, wenn die Urbilder von 0 und 1 separierbar sind.

Die linear separierbaren Funktionen spielen vor allem beim maschinellen Lernen eine Rolle. So kann zum Beispiel das einfache Perzeptron nur linear trennbare Funktionen erlernen. Ein Beispiel für eine nicht linear separierbare Funktion ist die XOR-Verknüpfung. Wie das Schaubild zeigt, ist eine lineare Trennung der beiden Ergebniswerte nicht möglich.[1]

Siehe auch Bearbeiten

Die lineare Separierbarkeit disjunkter konvexer Mengen, die im 2- oder 3-dimensionalen Anschauungsraum plausibel ist, wird im Trennungssatz behandelt. Dieser beinhaltet auch Verallgemeinerungen auf unendlich-dimensionale Räume.

Separierbarkeit als Eigenschaft von Filtern in der Bildverarbeitung sollte nicht mit linearer Separierbarkeit verwechselt werden.

Einzelnachweise Bearbeiten

  1. a b Raúl Rojas: Neural Networks – A Systematic Introduction. Springer, 1996, 3.3 Linearly separable functions, S. 63–66 (fu-berlin.de).