Hauptmenü öffnen

Tupel

in der Mathematik eine Weise mathematische Objekte zusammenzufassen

Tupel (abgetrennt von mittellat. quintuplus ‚fünffach‘, septuplus ‚siebenfach‘, centuplus ‚hundertfach‘ etc.) sind in der Mathematik neben Mengen eine wichtige Art und Weise, mathematische Objekte zusammenzufassen. Ein Tupel besteht aus einer Liste endlich vieler, nicht notwendigerweise voneinander verschiedener Objekte. Dabei spielt, im Gegensatz zu Mengen, die Reihenfolge der Objekte eine Rolle. Es gibt verschiedene Möglichkeiten, Tupel formal als Mengen darzustellen. Tupel finden in vielen Bereichen der Mathematik Verwendung, zum Beispiel als Koordinaten von Punkten oder als Vektoren in mehrdimensionalen Vektorräumen.

Von Tupeln unabhängig von ihrer Länge ist selten die Rede. Vielmehr verwendet man das Wort -Tupel und die im nächsten Abschnitt genannten Spezialfälle davon dann, wenn sich aus dem Zusammenhang die Länge als feste Zahl oder als benannte Konstante wie ergibt. Betrachtet man dagegen viele endliche Folgen unterschiedlicher Längen von Elementen einer Grundmenge, spricht man von endlichen Folgen oder definiert einen neuen Begriff, der oft mit „Kette“ zusammengesetzt ist, z. B. Zeichenkette, Additionskette.

In der Informatik wird der Begriff Tupel auch als Synonym für Datensatz verwendet.

Inhaltsverzeichnis

NotationBearbeiten

Ein  -Tupel ist eine Zusammenfassung von   mathematischen Objekten   in einer Liste. Im Gegensatz zu Mengen müssen die Objekte dabei nicht notwendigerweise voneinander verschieden sein und ihre Reihenfolge ist von Bedeutung. Tupel werden meist mittels runder Klammern

 

notiert, wobei zwei aufeinander folgende Objekte durch ein Komma getrennt werden. Das an der  -ten Stelle stehende Objekt   heißt dabei die  -te Komponente des Tupels. Gelegentlich werden zur Notation aber auch andere Klammertypen, wie eckige Klammern, und andere Trennzeichen, wie Semikolon oder senkrechter Strich, verwendet. Weitere Notationsvarianten sind

 

oder auch kurz  , wenn die Länge des Tupels aus dem Kontext klar ist. Ein 2-Tupel nennt man auch geordnetes Paar oder Dupel, ein 3-Tupel auch Tripel, ein 4-Tupel auch Quadrupel, ein 5-Tupel auch Quintupel und so fort. Das 0-Tupel heißt leeres Tupel und wird durch   notiert.

BeispieleBearbeiten

Tupel gleichartiger Objekte:

  •   und   sind zwei 1-Tupel von Elementen   einer Menge  
  •  ,   und   sind drei verschiedene 2-Tupel ganzer Zahlen
  •   ist ein 3-Tupel aus Mengen
  •   ist ein 4-Tupel trigonometrischer Funktionen

Tupel verschiedenartiger Objekte:

  • Ein gerichteter Graph ist ein Paar   bestehend aus einer Menge von Knoten   und einer Menge gerichteter Kanten  .
  • Ein Körper ist ein Tripel   bestehend aus einer Menge   und zwei zweistelligen Verknüpfungen   und  , die bestimmte Eigenschaften besitzen.
  • Ein Wahrscheinlichkeitsraum ist ein Tripel   bestehend aus einer Ergebnismenge  , einer σ-Algebra   und einem Wahrscheinlichkeitsmaß  .

Gleichheit von TupelnBearbeiten

Zwei Tupel   und   sind genau dann gleich, wenn sie gleich lang sind und ihre entsprechenden Komponenten gleich sind, das heißt[1]

  und   für  .

Darstellung als MengeBearbeiten

Tupel können auch als Mengen dargestellt werden. Eine einfache Darstellung von  -Tupeln lautet:[1]

 
 

Mit dieser Darstellung ist das geordnete Paar   die Menge  .

Einer anderen Darstellung liegt die Vorstellung zugrunde, dass Tupel endliche Folgen bzw. Familien sind, das heißt Funktionen mit einem eventuell leeren Abschnitt der Menge der positiven natürlichen Zahlen als Indexbereich[1] (geordnete Paare hier in eckigen Klammern):

 
 

Nicht leere Tupel können auch rekursiv auf Basis geordneter Paare dargestellt werden[2][3] (geordnete Paare auch hier in eckigen Klammern):

 
 

Allerdings gilt für auf letztgenannte Weise dargestellte Tupel lediglich eine schwächere Form des Gleichheitsaxioms: Zwei gleich lange Tupel sind dann und nur dann gleich, wenn ihre entsprechenden Komponenten gleich sind.

Unabhängig davon, wie Tupel als Mengen dargestellt werden, verhalten sich 2-Tupel genauso wie geordnete Paare und können wie diese verwendet werden, auch wenn sich, wie bei der Tupel-Darstellung als endliche Folge, 2-Tupel- und Paar-Darstellungen unterscheiden.

Die letzte der drei obigen Definitionen hat den Vorteil, dass sie auch für echte Klassen definiert ist, sofern das geordnete Paar   für echte Klassen definiert ist. Das heißt, man kann z. B. das Monoid der Ordinalzahlen   mit Addition   und neutralem Element   als Tupel   definieren, obwohl es sich bei den Ordinalzahlen um keine Menge, sondern um eine echte Klasse handelt.

VerwendungBearbeiten

Tupel werden in der Mathematik zum Beispiel als Koordinaten von Punkten oder Vektoren in  -dimensionalen Räumen und in der Informatik als Datenfelder und -strukturen verwendet. Folglich werden auch Zeilen oder Spalten von Matrizen ggf. als Tupel angesehen und behandelt.

Siehe auchBearbeiten

LiteraturBearbeiten

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. a b c V. P. Grishin: Tuple. In: Encyclopaedia of Mathematics. Springer (englisch, Online [abgerufen am 24. September 2010]).
  2. Nicolas Bourbaki: Eléments de mathématique. Première partie: Les strurures fondamentales de l’analyse. Livre I. Théorie des ensembles. Springer, Berlin 2006, ISBN 3-540-34034-3 (französisch).
  3. Arnold Oberschelp: Allgemeine Mengenlehre. BI-Wiss.-Verl., Mannheim/Leipzig/Wien/Zürich 1994, ISBN 3-411-17271-1.