Hauptmenü öffnen

Polyoxymethylen

chemische Verbindung, Thermoplast
(Weitergeleitet von Delrin)
QS-Chemie-Logo.svg
Dieser Artikel wurde auf der Qualitätssicherungsseite der Redaktion Chemie eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Chemie formal und inhaltlich auf ein in der Wikipedia gewünschtes Niveau zu bringen. Wir sind dankbar für deine Mithilfe, bitte beteilige dich an der Diskussion (neuer Eintrag) oder überarbeite den Artikel entsprechend.

Polyoxymethylen (Kurzzeichen POM, auch Polyacetal, Polyformaldehyd oder bloß Acetal[4][5] genannt) ist ein hochmolekularer thermoplastischer Kunststoff. Entdeckt in den 1920er-Jahren von Hermann Staudinger im Rahmen seiner Untersuchungen zu Makromolekülen, wurde POM 1952 von DuPont synthetisiert und die Herstellung 1956 zum Patent angemeldet. Er wird wegen seiner hohen Steifigkeit, niedrigen Reibwerte, ausgezeichneten Dimensionsstabilität und thermischen Stabilität als technischer Kunststoff, besonders für Präzisionsteile, eingesetzt.

Strukturformel
Strukturformel von Polyoxymethylen
Allgemeines
Name Polyoxymethylen
Andere Namen
  • Polyacetal
  • Polyformaldehyd (bei kurzkettigen Molekülen)
  • Polytrioxan
  • Kurzzeichen: POM
CAS-Nummer 9002-81-7
Monomere/Teilstrukturen
Art des Polymers

Thermoplast

Kurzbeschreibung

weißer Feststoff; teilkristallin[1]

Eigenschaften
Aggregatzustand

fest

Dichte

1,42 g/cm3[2]

Schmelzpunkt

175–178 °C[2]

Kristallinität

ca. 60–77 %[1]

Elastizitätsmodul

3200 MPa[2]

Wasseraufnahme

0,2 % bei Normalklima[2]

Bruchdehnung

30 % (Reißdehnung)[2]

Wärmeformbeständigkeit

110 °C[2]

Wärmeleitfähigkeit

0,31 W·m−1·K−1[2]

Thermischer Ausdehnungskoeffizient

100·10−6·K−1[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Inhaltsverzeichnis

EigenschaftenBearbeiten

POM zeichnet sich durch hohe Festigkeit, Härte und Steifigkeit in einem weiten Temperaturbereich aus. Es behält seine hohe Zähigkeit bis −40 °C, weist eine hohe Abriebfestigkeit, einen niedrigen Reibungskoeffizienten, eine hohe Wärmeformbeständigkeit, gute Gleiteigenschaften, gute elektrische und dielektrische Eigenschaften sowie eine geringe Wasseraufnahme auf und kann in vielen Fällen Metalle ersetzen. Die Eigenfarbe ist wegen der hohen Kristallinität opak weiß, aber das Material ist in allen Farben gedeckt einfärbbar. POM hat eine Dichte von   = 1,410 bis 1,420 g/cm3[6] und ist für Gebrauchstemperaturen bis 130 °C geeignet. Schlagzähe Produkte können durch Legieren von POM mit thermoplastischen Polyurethan-Elastomeren hergestellt werden.[1]

Bei hohen Verarbeitungstemperaturen über 220 °C oder beim Verbrennen beginnt POM sich thermisch zu zersetzen. Es bildet sich u. a. wieder freies Formaldehyd, welches einen erkennbaren, reizenden Geruch entwickelt. Dies ist nicht nur negativ zu sehen; im Vergleich zu anderen technischen Kunststoffen ist dadurch sehr leicht erkennbar, wenn das Material falsch verarbeitet wird. Aufgrund von Anforderungen aus der Automobilindustrie, die Emissionen innerhalb eines Fahrzeuges zu senken, entwickeln POM-Hersteller emissionsarme (sogenannte formaldehydreduzierte) Typen.

HerstellungBearbeiten

Man unterscheidet zwischen dem Homo- und Copolymer, welche nach unterschiedlichen Verfahren hergestellt werden.

HomopolymerBearbeiten

Chemisch hat das (Homo)Polymer die Struktur –(CH2–O–)n und unterscheidet sich im Wesentlichen durch den Polymerisationsgrad von Paraformaldehyd. Das Homopolymer wird auch als POM-H bezeichnet. Zur Stabilisierung, um bei Säureeinfluss oder thermischer Belastung die Depolymerisation zu verhindern, werden die Endgruppen durch Veretherung oder Veresterung verschlossen. Das Homopolymer wird meist durch direkte Polymerisation von Formaldehyd erhalten. Ein typisches Homopolymer ist beispielsweise Delrin (DuPont). Polyoxymethylen kann auch durch kationische oder übergangsmetallzentrierte kationische Polymerisation von Trioxan (–CH2–O–)3 erhalten werden.

CopolymerBearbeiten

Eine andere Möglichkeit zur Stabilisierung gegenüber Säureeinfluss und thermischer Belastung ist die Herstellung von Copolymeren, POM-C mit der Struktur –[(CH2–O)n–(CH2–CH2–O–)m], welches durch Copolymerisation von Trioxan mit 1,4-Dioxan, Ethylenoxid oder 1,3-Dioxolan erhalten wird. Hier werden zur Stabilisierung die instabilen Endgruppen durch Hydrolyse zu Formaldehyd abgebaut. Typische Copolymere sind beispielsweise Hostaform (Ticona/Celanese) und Ultraform (BASF).[1] Beide Formen lassen sich anhand des Schmelzpunktes unterscheiden. Das Homopolymer schmilzt bei 178 °C, das Copolymer bei 166 °C.

VerarbeitungBearbeiten

Das Material kann durch Spritzguss bei 195 bis 225 °C (POM-H) bzw. 180 bis 230 °C (POM-C) verarbeitet werden. Auch durch Extrusionsblasformen lässt es sich verarbeiten. POM-Halbzeug ist gut zur spanenden Weiterverarbeitung geeignet.

VerklebenBearbeiten

POM gehört zu den Kunststoffen mit niedriger Oberflächenenergie und ist ohne spezielle Oberflächenbehandlung nur bedingt klebbar. Durch Oxidation oder Beizen der Oberfläche lässt sich die Haftung von Klebstoffen verbessern.

Oxidation kann durch das Beflammen mit einer sauerstoffübersättigten Flamme erzielt werden (Bunsenbrenner). Dazu wird die Flamme in geringem Abstand schnell über die Oberfläche geführt. Für besonders haltbare Klebungen müssen die Klebeflächen mit 85%iger Phosphorsäure ca. 10 Sekunden lang bei 50 °C gebeizt und anschließend mit destilliertem Wasser abgespült werden. Die gebeizte Oberfläche kann dann z. B. mit einem 2-Komponenten-Kleber verklebt werden.

VerwendungBearbeiten

Die Verwendung von POM zur Herstellung von Bedarfsgegenständen, die in Kontakt mit Lebensmitteln kommen, ist im Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch geregelt. Verwendet werden darf nur POM mit einem Schmelzindex von maximal 50 g/10 min (MFI 190/2,16). Zudem sind die maximal zulässigen Anteile von Katalysatoren und anderen für die Herstellung und Verarbeitung notwendigen Stoffen geregelt. Für die Aufbewahrung und Verpackung von sauren Füllgütern mit einem pH-Wert unter 2,5 ist POM nicht geeignet.[8]

Handelsnamen & MarktanteileBearbeiten

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

Marktführer auf dem ca. 800.000 t[9] großen POM-Markt sind derzeit:

Weitere nennenswerte Produzenten (unter 3 %):

Nennenswerte Compoundeure (unter 1 %):

EinzelnachweiseBearbeiten

  1. a b c d Eintrag zu Polyacetale. In: Römpp Online. Georg Thieme Verlag, abgerufen am 2. November 2018.
  2. a b c d e f g h POM H – Polyoxymethylen. In: Technisches Datenblatt. König GmbH Kunststoffprodukte, August 2015, abgerufen am 4. Oktober 2018.
  3. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  4. Datenblatt Eigenschaften Acetal Polyacetal Polyoxymethylen POM C Kunststoff auf der Website der Fa. Technoplast.
  5. Acetalkunststoff – neue Möglichkeiten auf der Website der Fa. Schrieber Zahntechnik GmbH.
  6. Tabellenbuch Metall, 42. Aufl., S. 167.
  7. Beschreibung bei Duran-Gruppe.
  8. Kunststoffe im Lebensmittelverkehr Carl Heymanns Verlag KG, XXXIII. Acetalharze, Stand 1. Juni 2007.
  9. Polyoxymethylen (POM), kunststoffe.de