Satz von Mordell-Weil

mathematischer Satz
(Weitergeleitet von Satz von Mordell)

Der Satz von Mordell-Weil ist ein mathematischer Satz aus dem Gebiet der algebraischen Geometrie. Er besagt, dass für eine abelsche Varietät über einem Zahlkörper die abelsche Gruppe der -rationalen Punkte endlich erzeugt ist.

Den Spezialfall, dass eine elliptische Kurve und der Körper der rationalen Zahlen ist, nennt man Satz von Mordell nach Louis Mordell, der ihn 1922 bewies. Henri Poincaré hatte 1901 die Frage gestellt, welche Werte der Rang von annehmen kann.

Die Verallgemeinerung wurde von André Weil in seiner 1928 veröffentlichten Doktorarbeit bewiesen.

Sei   ein Zahlkörper, also eine endliche Körpererweiterung von   und   eine abelsche Varietät, also eine algebraische Varietät, die zugleich die Struktur einer abelschen Gruppe trägt und einigen weiteren Zusatzeigenschaften. Ein Beispiel hierfür sind elliptische Kurven. Dann ist die Gruppe   der Punkte von  , die über   definiert sind, endlich erzeugt.

Aus dem Satz folgt, dass die Mordell-Weil-Gruppe   ist, wobei die Torsionsgruppe   eine endliche abelsche Gruppe (die Gruppe der Torsionspunkte) und r der Rang der Mordell-Weil-Gruppe (mit Erzeugenden  ) ist. Diese Struktur ergibt sich allgemein nach dem Hauptsatz über endlich erzeugte abelsche Gruppen.

Beweisidee für elliptische Kurven

Bearbeiten

Um den Satz für elliptische Kurven zu zeigen, beweist man zunächst den sogenannten schwachen Satz von Mordell-Weil. Dieser besagt, dass für jede ganze Zahl   die Gruppe   endlich ist. Den Satz von Mordell-Weil erhält man hieraus mit Hilfe von Höhenfunktionen und einem Abstiegsargument.

Weitergehende Fragen

Bearbeiten
  • Nach dem Satz von Mordell-Weil hat die Gruppe der rationalen Punkte einer elliptischen Kurve endlichen Rang, die Vermutung von Birch und Swinnerton-Dyer gibt ein Verfahren an, wie man diesen bestimmen kann.
  • Allgemeiner kann man auch nach der Anzahl der rationalen Punkte einer algebraischen Kurve fragen. Nach einer inzwischen bewiesenen Vermutung von Mordell ist diese endlich für Kurven mit Geschlecht 2 oder höher (das heißt für ihren Rang gilt  ).

Literatur

Bearbeiten
  • André Weil: L’arithmétique sur les courbes algébriques. Acta Math 52, 1929, S. 281–315.
  • Louis Mordell: On the rational solutions of the indeterminate equation of the 3rd and 4th degrees. Proc. Cambridge Philosophical Society, Bd. 21, 1922, S. 179–192.
  • Joseph Silverman: The arithmetic of elliptic curves. Graduate Texts in Mathematics. Springer-Verlag, 1986, ISBN 0-387-96203-4.
  • Jean-Pierre Serre: Lectures on the Mordell-Weil theorem. Vieweg, 1997, ISBN 978-3-528-28968-3.
Bearbeiten