Neuner- und Elferprobe

Rechenproben

Neuner- und Elferprobe sind Verfahren, um Rechenfehler bei der Addition, Subtraktion oder Multiplikation natürlicher Zahlen zu erkennen. Der Vorteil dieser Proben liegt darin, dass sich die Richtigkeit des Ergebnisses einer langwierigen Rechnung anhand leichterer alternativer Rechenwege auf Glaubwürdigkeit prüfen bzw. gegebenenfalls die Fehlerhaftigkeit einer Rechnung nachweisen lässt. Da aber nicht alle Fehler erkannt werden, bedeutet ein Gelingen der Neuner- bzw. Elferprobe nicht, dass das Ergebnis korrekt ist.

Umgangssprachlich wird der Begriff Neunerprobe auch allgemein für eine überschlägige Prüfung von Ergebnissen verwendet.

Vorgehensweise Bearbeiten

Neunerrest Bearbeiten

Um den Neunerrest einer natürlichen Zahl   zu ermitteln, berechnet man zuerst die Quersumme   dieser Zahl, anschließend die Quersumme der Quersumme   und so fort  , bis letztendlich nur mehr eine einstellige Zahl übrigbleibt. Falls sich dabei 9 ergibt, wird 9 durch 0 ersetzt.

Beispiele:

Der Neunerrest von 5919 ist 6: 5 + 9 + 1 + 9 = 24, und 2 + 4 = 6

Der Neunerrest von 81 ist 0: 8 + 1 = 9, und aus 9 wird 0

Elferrest Bearbeiten

Der Elferrest berechnet sich ähnlich, nur dass hier die alternierende Quersumme   berechnet wird. Bei dieser werden die Ziffern der Zahl  , beginnend bei der letzten Ziffer, abwechselnd subtrahiert und addiert.

Beispiel: Der Elferrest von 5919 ist 1: 9 − 1 + 9 − 5 = 12, und 2 − 1 = 1

Neunerprobe Bearbeiten

Die Neunerprobe für eine Berechnung besteht darin, die gleiche Berechnung mit den jeweiligen Neunerresten der an der Berechnung beteiligten Zahlen (Operanden und Ergebnis) durchzuführen.

  • Führt die Probe zu einer falschen Aussage, enthält die überprüfte Rechnung mit Sicherheit einen Fehler. Beispiel: Überprüft werden soll die Rechnung 12 + 47 = 69. Der Neunerrest von 12 ist 3, der Neunerrest von 47 ist 2, der Neunerrest der Summe muss also 2 + 3 = 5 sein. Der Neunerrest von 69 ist aber 6. Da das richtige Ergebnis 59 durch 69 ersetzt wurde, schlägt die Neunerprobe fehl (3 + 2 = 5 ≠ 6),
  • Stimmt die Probe, so folgt daraus allerdings nicht zwingend, dass die überprüfte Rechnung stimmt. So ändert ein Zahlendreher in der überprüften Rechnung nichts am Ergebnis der Neunerprobe, weil bei der Quersumme (und somit beim Neunerrest) die Reihenfolge der Ziffern keine Rolle spielt.

Die Neunerprobe kann prinzipiell keine Fehler aufdecken, bei denen das falsche Ergebnis um ein Vielfaches von 9 vom korrekten Ergebnis abweicht. Deswegen kann man sagen, dass die Neunerprobe 8 von 9 Fehlern aufdeckt, was einer Fehlererkennungswahrscheinlichkeit von 88,8 % entspricht.

Elferprobe Bearbeiten

Die Elferprobe erfolgt analog zur Neunerprobe. Es wird also die entsprechende Berechnung mit den Elferresten durchgeführt und überprüft, ob diese Probe aufgeht.

Die Elferprobe allein durchgeführt, deckt 10 von 11 Fehlern auf, was einer Fehlererkennungswahrscheinlichkeit von 90,90 % entspricht.

Kombination von Neuner- und Elferprobe Bearbeiten

Eine höhere Sicherheit wird erzielt, indem sowohl die Neuner- als auch die Elferprobe angewandt werden. Führt man beide Proben erfolgreich durch, ist das Ergebnis in 98 von 99 Fällen richtig, was also eine Fehlererkennungswahrscheinlichkeit von 98,98 % bedeutet.

Allgemeines Bearbeiten

Die Verfahren Neuner- und Elferprobe lassen sich gleichermaßen auf Additionen, Subtraktionen und Multiplikationen anwenden, nicht jedoch auf Divisionen und Potenzen.

Man kann eventuell auftretende negative Neuner- bzw. Elferreste in positive Reste überführen, indem man 9 bzw. 11 addiert. Beispielsweise ist der Elferrest von 492 gleich 2 – 9 + 4 = –3; durch Addition von 11 erhält man 8.

Rechenbeispiele Bearbeiten

Addition Bearbeiten

Rechnung Neunerprobe Elferprobe
 
573
+492
+145
1210
 
Rest Probe
5+7+3=15; 1+5=6 6
4+9+2=15; 1+5=6 +6
1+4+5=10; 1+0=1 +1
1+2+1+0=4 131+3=4
4 = 4
Rest Probe
3–7+5=1 1
2–9+4=–3; –3+11=8 +8
5–4+1=2 +2
0–1+2–1=0 111–1=0
0 = 0

Sowohl die Neuner- als auch die Elferprobe gehen hier auf. Dies bedeutet, dass die Beispiel-Addition mit einer Wahrscheinlichkeit von insgesamt   richtig ist. Jedenfalls kann hier weder anhand der Neuner- noch der Elferprobe bewiesen werden, dass das Additionsergebnis falsch wäre.

Subtraktion Bearbeiten

Rechnung Neunerprobe Elferprobe
 
573
−492
18
 
Rest Probe
5+7+3=15; 1+5=6 6
4+9+2=15; 1+5=6 −6
1+8=99–9=0 0
0 = 0
Rest Probe
3–7+5=1 1
2–9+4=–3; –3+11=8 –8
8–1=7 –7–7+11=4
7 ≠ 4

Bei diesem Beispiel liegt ein Zahlendreher vor. Die richtige Antwort wäre 81, fälschlicherweise wird im Beispiel 18 berechnet. Die Neunerprobe ist hier nicht in der Lage, diesen Zahlendreher zu erkennen, da er die Quersumme nicht verändert:  . Die Elferprobe kann bei diesem Beispiel hingegen den Zahlendreher erkennen und beweist, dass das Ergebnis 18 sicher falsch ist.

Multiplikation Bearbeiten

Rechnung Neunerprobe Elferprobe
 
573
×492
281916
 
Rest Probe
5+7+3=15; 1+5=6 6
4+9+2=15; 1+5=6 ×6
2+8+1+9+1+6=27; 2+7=9 363+6=9
9 = 9
Rest Probe
3–7+5=1 1
2–9+4=–3; –3+11=8 ×8
6–1+9–1+8–2=19; 9–1=8 8
8 = 8

Sowohl die Neuner- als auch die Elferprobe gehen hier auf. Dies bedeutet, dass die Beispiel-Multiplikation mit einer Wahrscheinlichkeit von insgesamt   richtig ist. Jedenfalls kann hier weder anhand der Neuner- noch der Elferprobe bewiesen werden, dass das Multiplikationsergebnis falsch wäre.

Kombination von Addition, Subtraktion und Multiplikation Bearbeiten

Das folgende Beispiel soll die Anwendung von Neuner- und Elferprobe anhand einer Ausgangsberechnung veranschaulichen, bei der eine Kombination von Addition, Subtraktion und Multiplikation vorkommt.

Ausgangsberechnung Bearbeiten

–25198 + 519948 × (18192 – 717) = 9086066102

Neunerreste Bearbeiten

  • Neunerrest von 25198 ist 7, da 2 + 5 + 1 + 9 + 8 = 25; 2 + 5 = 7
  • Neunerrest von 519948 ist 0, da 5 + 1 + 9 + 9 + 4 + 8 = 36; 3 + 6 = 9; aus 9 wird 0
  • Neunerrest von 18192 ist 3, da 1 + 8 + 1 + 9 + 2 = 21; 2 + 1 = 3
  • Neunerrest von 717 ist 6, da 7 + 1 + 7 = 15; 1 + 5 = 6
  • Neunerrest von 9086066102 ist 2, da 9 + 0 + 8 + 6 + 0 + 6 + 6 + 1 + 0 + 2 = 38; 3 + 8 = 11; 1 + 1 = 2

Neunerprobe Bearbeiten

Anhand der Ausgangsberechnung erhält man die folgende Gleichung, wobei die ursprünglichen Zahlen durch ihre jeweiligen Neunerreste ersetzt werden:

–7 + 0 × (3 – 6) = 2

Nun löst man diese Gleichung:

–7 + 0 × (–3) = 2
–7 + 0 = 2
–7 = 2
–7 + 9 = 2 … negative Neunerreste werden durch (gegebenenfalls wiederholtes) Addieren von 9 in positive Neunerreste übergeführt
2 = 2

Man stellt fest, dass die Gleichung zu einer wahren Aussage führt, die Neunerprobe also aufgeht. Somit ist die Ausgangsberechnung mit einer Wahrscheinlichkeit von   korrekt. Jedenfalls kann hier anhand der Neunerprobe nicht bewiesen werden, dass die Ausgangsberechnung falsch wäre.

Elferreste Bearbeiten

  • Elferrest von 25198 ist 8, da 8 – 9 + 1 – 5 + 2 = –3; –3 + 11 = 8
  • Elferrest von 519948 ist 0, da 8 – 4 + 9 – 9 + 1 – 5 = 0
  • Elferrest von 18192 ist 9, da 2 – 9 + 1 – 8 + 1 = –13; –13 + 11 = –2; –2 + 11 = 9
  • Elferrest von 717 ist 2, da 7 – 1 + 7 = 13; 3 – 1 = 2
  • Elferrest von 9086066102 ist 3, da 2 – 0 + 1 – 6 + 6 – 0 + 6 – 8 + 0 – 9 = –8; –8 + 11 = 3

Elferprobe Bearbeiten

Anhand der Ausgangsberechnung erhält man die folgende Gleichung, wobei die ursprünglichen Zahlen durch ihre jeweiligen Elferreste ersetzt werden:

–8 + 0 × (9 – 2) = 3

Nun löst man diese Gleichung:

–8 + 0 × 7 = 3
–8 + 0 = 3
–8 = 3
–8 + 11 = 3 … negative Elferreste werden durch (gegebenenfalls wiederholtes) Addieren von 11 in positive Elferreste übergeführt
3 = 3

Man stellt fest, dass die Gleichung zu einer wahren Aussage führt, die Elferprobe also aufgeht. Somit ist die Ausgangsberechnung mit einer Wahrscheinlichkeit von   korrekt. Jedenfalls kann hier anhand der Elferprobe nicht bewiesen werden, dass die Ausgangsberechnung falsch wäre.

Neuner- und Elferprobe Bearbeiten

Nachdem bei diesem Beispiel sowohl die Neuner- als auch die Elferprobe aufgehen, ist die Ausgangsberechnung hieraus mit einer Wahrscheinlichkeit von   richtig. Jedenfalls kann hier weder anhand der Neuner- noch der Elferprobe bewiesen werden, dass die Ausgangsberechnung falsch wäre.

Herkunft Bearbeiten

Im al-Khwarizmis „Algorismus“ (9. Jh.) wird die Neunerprobe, aber ohne Verwendung der Quersummen, zum ersten Mal für die Verdopplung und Multiplikation besprochen. Die Faktoren bzw. das Produkt werden durch 9 dividiert und der Rest wird aufgeschrieben. Die so ermittelten Reste entsprechen den Neunerresten der Faktoren bzw. des Produkts.

Die Elferprobe wurde wahrscheinlich erstmals von dem persischen Mathematiker Abu Bakr al-Karadschi um das Jahr 1010 entdeckt und in dem Buch al-Kāfī fī l-hisāb (Genügendes über die Arithmetik) niedergeschrieben. Das Verfahren ist durch arabische Vermittlung vermutlich bereits seit dem 12. Jahrhundert in Europa bekannt. Leonardo Fibonacci beschrieb es in seinem Werk Liber abbaci, das in seiner zweiten Fassung spätestens um 1227 existierte.[1]

Mathematischer Hintergrund und andere Basen Bearbeiten

Allgemeines Bearbeiten

Die besondere Bedeutung der Neuner- und Elferprobe im Dezimalsystem ergibt sich daraus, dass sich der Neunerrest einfach als Quersumme und der Elferrest als alternierende Quersumme berechnen lassen.

In einem Stellenwertsystem zur Basis   lassen sich wegen

  •   und
  •  

die Proben mit den Zahlen

  •   und
  •  

besonders einfach durchführen.

Fehlererkennungswahrscheinlichkeiten Bearbeiten

  • Die  er-Probe allein durchgeführt, deckt   von   Fehlern auf, was einer Fehlererkennungswahrscheinlichkeit von   entspricht.
  • Die  er-Probe allein durchgeführt, deckt   von   Fehlern auf, was einer Fehlererkennungswahrscheinlichkeit von   entspricht.
  • Führt man beide Proben erfolgreich durch, ist das Ergebnis in   von   Fällen richtig, was also eine Fehlererkennungswahrscheinlichkeit von   bedeutet. ( kleinstes gemeinsames Vielfaches)

Dreierprobe Bearbeiten

Im Falle von Zahlen im Dualsystem ist die Dreierprobe sinnvoll, die für die TR 440 implementiert worden ist. Die reguläre Wortlänge betrug 48 Bits, wozu 2 Bits für die Dreierprobe hinzukamen und 2 Bits für die Typenkennung. Die Prüfsumme der Dreierprobe ergab sich dann durch die Quersumme der 24 Dualziffernpaare von je 2 Bits modulo 3. Dies erlaubte nicht nur die Erkennung von Speicherfehlern, sondern auch von Fehlern bei arithmetischen Operationen.[2]

Beispiel für Hexadezimalsystem Bearbeiten

Beispielsweise ergibt im Hexadezimalsystem (Basis = 16) die Quersumme den 15er-Rest (auch „F-Rest“ genannt) und die alternierende Quersumme den 17er-Rest. Die 15er- und die 17er-Probe sehen dann für die Beispiel-Rechnung A1F + C02 folgendermaßen aus:

Rechnung 15er-Probe 17er-Probe
 
A1F
+C02
1621
 
Rest Probe
A+1+F=1A; 1+A=B B
C+0+2=E +E
1+6+2+1=A 2510=19161+9=A
A = A
Rest Probe
F–1+A=18; 8–1=7 7
2–0+C=E +E
1–2+6–1=4 2110=15165–1=4
4 = 4

Sowohl die 15er- als auch die 17er-Probe gehen hier auf. Dies bedeutet, dass die Beispiel-Addition mit einer Wahrscheinlichkeit von insgesamt   richtig ist. Jedenfalls kann hier weder anhand der 15er- noch der 17er-Probe bewiesen werden, dass das Additionsergebnis falsch wäre.

Siehe auch Bearbeiten

Literatur Bearbeiten

  • Alireza Djafari Naini: Geschichte der Zahlentheorie im Orient, im Mittelalter und zu Beginn der Neuzeit unter besonderer Berücksichtigung persischer Mathematiker. Verlag Klose & Co, Braunschweig, 1982.
  • Kurt Vogel (Hrsg.): Mohammed ibn Musa Alchwarizmi's Algorismus: Das frühste Lehrbuch zum Rechnen mit indischen Ziffern : Nach der einzigen (lateinischen) Handschrift (Cambridge Un. Lib. Ms. Ii.6.5.) in Faksimile mit Transkription und Kommentar, Otto Zeller: Aalen, 1963.

Anmerkungen Bearbeiten

  1. Naini: Geschichte der Zahlentheorie im Orient, S. 32–33
  2. Karl Steinbuch und W. Weber: Taschenbuch der Informatik: Band II Struktur und Programmierung von EDV-Systemen. Springer-Verlag, 2013, S. 73 (eingeschränkte Vorschau in der Google-Buchsuche).